scholarly journals α1-Microglobulin (A1M) Protects Human Proximal Tubule Epithelial Cells from Heme-Induced Damage In Vitro

2020 ◽  
Vol 21 (16) ◽  
pp. 5825 ◽  
Author(s):  
Amanda Kristiansson ◽  
Sara Davidsson ◽  
Maria E. Johansson ◽  
Sarah Piel ◽  
Eskil Elmér ◽  
...  

Oxidative stress is associated with many renal disorders, both acute and chronic, and has also been described to contribute to the disease progression. Therefore, oxidative stress is a potential therapeutic target. The human antioxidant α1-microglobulin (A1M) is a plasma and tissue protein with heme-binding, radical-scavenging and reductase activities. A1M can be internalized by cells, localized to the mitochondria and protect mitochondrial function. Due to its small size, A1M is filtered from the blood into the glomeruli, and taken up by the renal tubular epithelial cells. A1M has previously been described to reduce renal damage in animal models of preeclampsia, radiotherapy and rhabdomyolysis, and is proposed as a pharmacological agent for the treatment of kidney damage. In this paper, we examined the in vitro protective effects of recombinant human A1M (rA1M) in human proximal tubule epithelial cells. Moreover, rA1M was found to protect against heme-induced cell-death both in primary cells (RPTEC) and in a cell-line (HK-2). Expression of stress-related genes was upregulated in both cell cultures in response to heme exposure, as measured by qPCR and confirmed with in situ hybridization in HK-2 cells, whereas co-treatment with rA1M counteracted the upregulation. Mitochondrial respiration, analyzed with the Seahorse extracellular flux analyzer, was compromised following exposure to heme, but preserved by co-treatment with rA1M. Finally, heme addition to RPTE cells induced an upregulation of the endogenous cellular expression of A1M, via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-pathway. Overall, data suggest that A1M/rA1M protects against stress-induced damage to tubule epithelial cells that, at least partly, can be attributed to maintaining mitochondrial function.

Author(s):  
Daisy Liu

Snow fungus, Tremella fuciformis, has been demonstrated to have numerous health benefits including purported chemopreventive properties due to free radical-scavenging ability. Protective effects derived from snow fungus polysaccharides are evaluated on Chinese hamster lung fibroblasts (CCL-39) exposed to carcinogen benzo[a]pyrene known to cause free radical formation and oxidative stress to cells. In this experiment, it was hypothesized that the naturally occurring polysaccharides in snow fungus are able to protect against or reduce oxidative stress-induced DNA damage. Polysaccharides were isolated through an alkaline extraction and in-vitro digestion. DNA damage was measured using the single-cell gel electrophoresis comet assay after exposure to benzo[a]pyrene and polysaccharide extract to lung fibroblasts. Results were calculated using the mean and standard deviation data of tail length and area, respectively. Each damaged cell was measured and analyzed through ImageJ Editing Software. The results indicate a promising trend which depict snow fungus polysaccharides yielding lower levels of DNA damage compared to cells exposed to benzo[a]pyrene and compared to the negative control (phosphate buffered saline and Dulbecco’s cell medium). This study suggests polysaccharides from Tremella fuciformis could truly prevent cellular DNA damage by protecting against oxidative stress.


2012 ◽  
Vol 67 (5-6) ◽  
pp. 297-307 ◽  
Author(s):  
Osama M. Ashour ◽  
Ashraf B. Abdel-Naim ◽  
Hossam M. Abdallah ◽  
Ayman A. Nagy ◽  
Ahmed M. Mohamadin ◽  
...  

Doxorubicin (DOX) is an anthracycline antibiotic widely used as a chemotherapeutic agent in the treatment of several tumours. However, its cardiac toxicity limits its use at maximum therapeutic doses. Most studies implicated increased oxidative stress as the major determinant of DOX cardiotoxicity. The local Saudi flora is very rich in a variety of plants of quite known folkloric or traditional medicinal uses. Tribulus macropterus Boiss., Olea europaea L. subsp. africana (Mill.) P. S. Green, Tamarix aphylla (L.) H. Karst., Cynomorium coccineum L., Cordia myxa L., Calligonum comosum L’ Hér, and Withania somnifera (L.) Dunal are Saudi plants known to have antioxidant activities. The aim of the current study was to explore the potential protective effects of methanolic extracts of these seven Saudi plants against DOX-induced cardiotoxicity in rats. Two plants showed promising cardioprotective potential in the order Calligonum comosum > Cordia myxa. The two plant extracts showed potent in vitro radical scavenging and antioxidant properties. They significantly protected against DOX-induced alterations in cardiac oxidative stress markers (GSH and MDA) and cardiac serum markers (CK-MB and LDH activities). Additionally, histopathological examination indicated a protection against DOX-induced cardiotoxicity. In conclusion, C. comosum and C. myxa exerted protective activity against DOX-induced cardiotoxicity, which is, at least partly, due to their antioxidant effect


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jing Wang ◽  
Wei Zhang ◽  
Sixin Wang ◽  
Yamin Wang ◽  
Xu Chu ◽  
...  

Probiotics are widely used for protection against stress-induced intestinal dysfunction. Oxidative stress plays a critical role in gastrointestinal disorders. It is established that probiotics alleviate oxidative stress; however, the mechanism of action has not been elucidated. We developed an in vitro intestinal porcine epithelial cells (IPEC-J2) model of oxidative stress to explore the antioxidant effect and potential mode of action of Lactobacillus plantarum ZLP001. The IPEC-J2 cells were preincubated with and without L. plantarum ZLP001 for 3 h and then exposed to hydrogen peroxide (H2O2) for 4 h. Pretreatment with L. plantarum ZLP001 protected IPEC-J2 cells against H2O2-induced oxidative damage as indicated by cell viability assays and significantly alleviated apoptosis elicited by H2O2. L. plantarum ZLP001 pretreatment decreased reactive oxygen species production and the cellular malondialdehyde concentration and increased the mitochondrial membrane potential compared with H2O2 treatment alone, suggesting that L. plantarum ZLP001 promotes the maintenance of redox homeostasis in the cells. Furthermore, L. plantarum ZLP001 regulated the expression and generation of some antioxidant enzymes, thereby activating the antioxidant defense system. Treatment with L. plantarum ZLP001 led to nuclear erythroid 2-related factor 2 (Nrf2) enrichment in the nucleus compared with H2O2 treatment alone. Knockdown of Nrf2 significantly weakened the alleviating effect of L. plantarum ZLP001 on antioxidant stress in IPEC-J2 cells, suggesting that Nrf2 is involved in the antioxidative effect of L. plantarum ZLP001. Collectively, these results indicate that L. plantarum ZLP001 is a promising probiotic bacterium that can potentially alleviate oxidative stress.


Author(s):  
Anita Kirti Ghosh ◽  
Rubina Thapa ◽  
Harsh Nilesh Hariani ◽  
Michael Volyanyuk ◽  
Karoline Anne Orloff ◽  
...  

Elevated levels of oxidative stress in the corneal epithelium contribute to the progression of dry eye disease pathology. Previous studies have shown that antioxidant therapeutic intervention is a promising avenue to reduce disease burden and slow disease progression. In this study, we evaluated the pharmacological efficacy of Xanthohumol in preclinical models for dry eye disease. Xanthohumol is a naturally occurring prenylated chalconoid that promotes the transcription of phase II antioxidant enzymes. Xanthohumol exerted a dose-response in preventing tert-butylhydroxide-induced loss of cell viability in human corneal epithelial (HCE-T) cells and resulted in a significant increase in expression of nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator of the endogenous antioxidant system. Xanthohumol-encapsulating poly(lactic-co-glycolic acid) nanoparticles (PLGA NP) were cytoprotective against oxidative stress in vitro, and significantly reduced corneal fluorescein staining in the mouse desiccating stress/ scopolamine model for dry eye disease in vivo by reducing oxidative stress-associated DNA damage in corneal epithelial cells. PLGA NP represent a safe and efficacious drug delivery vehicle for hydrophobic small molecules to the ocular surface. Optimization of NP-based antioxidant formulations with the goal to minimize instillation frequency may represent future therapeutic options for dry eye disease and related ocular surface disease.


2020 ◽  
Vol 7 ◽  
Author(s):  
Yan Wang ◽  
Zengshuo Xie ◽  
Nan Jiang ◽  
Zexuan Wu ◽  
Ruicong Xue ◽  
...  

Cardiac hypertrophy is a pathophysiological response to harmful stimuli. The continued presence of cardiac hypertrophy will ultimately develop into heart failure. The mitochondrion is the primary organelle of energy production, and its dysfunction plays a crucial role in the progressive development of heart failure from cardiac hypertrophy. Hispidulin, a natural flavonoid, has been substantiated to improve energy metabolism and inhibit oxidative stress. However, how hispidulin regulates cardiac hypertrophy and its underlying mechanism remains unknown. We found that hispidulin significantly inhibited pressure overload-induced cardiac hypertrophy and improved cardiac function in vivo and blocked phenylephrine (PE)-induced cardiomyocyte hypertrophy in vitro. We further proved that hispidulin remarkably improved mitochondrial function, manifested by increased electron transport chain (ETC) subunits expression, elevated ATP production, increased oxygen consumption rates (OCR), normalized mitochondrial morphology, and reduced oxidative stress. Furthermore, we discovered that Sirt1, a well-recognized regulator of mitochondrial function, might be a target of hispidulin, as evidenced by its upregulation after hispidulin treatment. Cotreatment with EX527 (a Sirt1-specific inhibitor) and hispidulin nearly completely abolished the antihypertrophic and protective effects of hispidulin on mitochondrial function, providing further evidence that Sirt1 could be the pivotal downstream effector of hispidulin in regulating cardiac hypertrophy.


2016 ◽  
Vol 36 (9) ◽  
pp. 949-966 ◽  
Author(s):  
W Liu ◽  
Z Xu ◽  
H Li ◽  
M Guo ◽  
T Yang ◽  
...  

Mercury (Hg) represents a ubiquitous environmental heavy metal that could lead to severe toxic effects in a variety of organs usually at a low level. The present study focused on the liver oxidative stress, one of the most important roles playing in Hg hepatotoxicity, by evaluation of different concentrations of mercuric chloride (HgCl2) administration. Moreover, the protective potential of curcumin against Hg hepatotoxic effects was also investigated. Eighty-four rats were randomly divided into six groups for a three-days experiment: control, dimethyl sulfoxide control, HgCl2 treatment (0.6, 1.2, and 2.4 mg kg−1 day−1), and curcumin pretreatment (100 mg kg−1 day−1) groups. Exposure of HgCl2 resulted in acute dose-dependent hepatotoxic effects. Administration of 2.4 mg kg−1 HgCl2 significantly elevated total Hg, nonprotein sulfhydryl, reactive oxygen species formation, malondialdehyde, apoptosis levels, serum lactate dehydrogenase, and alanine transaminase activities, with an impairment of superoxide dismutase and glutathione peroxidase in the liver. Moreover, HgCl2 treatment activated nuclear factor-E2-related factor 2-antioxidant response element (Nrf2-ARE) signaling pathway in further investigation, with a significant upregulation of Nrf2, heme oxygenase-1, and γ-glutamylcysteine synthetase heavy subunit expression, relative to control. Pretreatment with curcumin obviously prevented HgCl2-induced liver oxidative stress, which may be due to its free radical scavenging or Nrf2-ARE pathway-inducing properties. Taking together these data suggest that curcumin counteracts HgCl2 hepatotoxicity through antagonizing liver oxidative stress.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Sudeshna Paul ◽  
Shamreen Naaz ◽  
Arnab Kumar Ghosh ◽  
Sanatan Mishra ◽  
Aindrila Chattopadhyay ◽  
...  

Oxidative stress is an important causative factor for a number of diseases. Phenylhydrazine (PHZ) is a widely accepted model for studying hemolytic anemia by induction of oxidative stress. In the present study, goat red blood cells (RBCs) were incubated in vitro with PHZ (1mM) to generate oxidative stress. To test whether melatonin exhibits protective effects on PHZ induced RBC damage and to explore its potential molecular mechanisms, different concentrations of melatonin (5, 10, 20 and 40 nmoles/ml) were also included. PHZ caused altered profiles on biomarkers of oxidative stress and antioxidative as well as glucose metabolic enzymes in RBCs. These alterations indicated a development of oxidative stress. Melatonin at a concentration of 40 nmoles/ml provided optimal protection against all alterations induced by PHZ. The important cellular membrane proteins, including spectrin and actin, were also damaged by PHZ and this led to RBC deformation similar to that of observed in severe β-thalassaemia; the RBC deformation was also prevented by melatonin. Binding profiles of melatonin with PHZ and ferrous iron indicated favorable binding of melatonin with both of them, respectively. Thus, in addition to the direct antioxidant and free radical scavenging capability, melatonin also inhibited iron overloading by chelating iron and binding with the PHZ. This action of melatonin further reduces free radical generation. Based on the results, melatonin may provide therapeutic relevance to ß-thalassemia and other hemolytic RBC disorders involving oxidative stress. 


2012 ◽  
Vol 303 (1) ◽  
pp. R1-R7 ◽  
Author(s):  
Jianming Xiang ◽  
Gina N. Alesi ◽  
Ningna Zhou ◽  
Richard F Keep

The choroid plexuses (CPs) form the blood-cerebrospinal fluid (CSF) barrier (BCSFB) and play an important role in maintaining brain normal function and the brain response to injury. Many neurological disorders are associated with oxidative stress that can impact CP function. This study examined the effects of isothiocyanates, an abundant component in cruciferous vegetables, on H2O2-induced BCSFB disruption and CP cell death in vitro. It further examined the potential role of a transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), in isothiocyanate-induced protection. Sulforaphane (SF) significantly reduced H2O2-induced BCSFB disruption as assessed by transepithelial electrical resistance (29 ± 7% reduction vs. 92 ± 2% decrease in controls) and [3H]mannitol permeability. Allyl-isothiocyanate (AITC) had a similar protective effect. H2O2-induced epithelial cell death was also reduced by these isothiocyanates. In primary CP cells, SF and AITC reduced cell death by 42 ± 3% and 53 ± 10%, respectively. Similar protection was found in a CP cell line Z310. Protection was only found with pretreatment for 12–48 h and not with acute exposure (1 h). The protective effects of SF and AITC were associated with Nrf2 nuclear translocation and upregulated expression of antioxidative systems regulated by Nrf2, including heme oxygenase-1, NAD(P)H quinine oxidoreductase, and cysteine/glutamate exchange transporter. Thus isothiocyanates, as diet or medicine, may be a method for protecting BCSFB in neurological disorders.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 670
Author(s):  
Maria Letizia Manca ◽  
Maria Manconi ◽  
Maria Cristina Meloni ◽  
Francesca Marongiu ◽  
Mohamad Allaw ◽  
...  

Neem oil, a plant-derived product rich in bioactives, has been incorporated in liposomes and hyalurosomes modified by adding argan oil and so called argan-liposomes and argan-hyalurosomes. Argan oil has also been added to the vesicles because of its regenerative and protective effects on skin. In the light of this, vesicles were specifically tailored to protect the skin from oxidative stress and treat lesions. Argan-liposomes were the smallest vesicles (~113 nm); the addition of sodium hyaluronate led to an increase in vesicle size (~143 nm) but it significantly improved vesicle stability during storage. In vitro studies confirmed the free radical scavenging activity of formulations, irrespective of their composition. Moreover, rheological investigation confirmed the higher viscosity of argan-hyalurosomes, which avoid formulation leakage after application. In vitro studies performed by using the most representative cells of the skin (i.e., keratinocytes and fibroblasts) underlined the ability of vesicles, especially argan-liposomes and argan-hyalurosomes, to counteract oxidative stress induced in these cells by using hydrogen peroxide and to improve the proliferation and migration of cells ensuring the more rapid and even complete closure of the wound (scratch assay).


Sign in / Sign up

Export Citation Format

Share Document