Melatonin chelates iron and binds directly with phenylhydrazine to provide protection against phenylhydrazine induced oxidative damage in red blood cells along with its antioxidant mechanisms: an in vitro study

2018 ◽  
Vol 1 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Sudeshna Paul ◽  
Shamreen Naaz ◽  
Arnab Kumar Ghosh ◽  
Sanatan Mishra ◽  
Aindrila Chattopadhyay ◽  
...  

Oxidative stress is an important causative factor for a number of diseases. Phenylhydrazine (PHZ) is a widely accepted model for studying hemolytic anemia by induction of oxidative stress. In the present study, goat red blood cells (RBCs) were incubated in vitro with PHZ (1mM) to generate oxidative stress. To test whether melatonin exhibits protective effects on PHZ induced RBC damage and to explore its potential molecular mechanisms, different concentrations of melatonin (5, 10, 20 and 40 nmoles/ml) were also included. PHZ caused altered profiles on biomarkers of oxidative stress and antioxidative as well as glucose metabolic enzymes in RBCs. These alterations indicated a development of oxidative stress. Melatonin at a concentration of 40 nmoles/ml provided optimal protection against all alterations induced by PHZ. The important cellular membrane proteins, including spectrin and actin, were also damaged by PHZ and this led to RBC deformation similar to that of observed in severe β-thalassaemia; the RBC deformation was also prevented by melatonin. Binding profiles of melatonin with PHZ and ferrous iron indicated favorable binding of melatonin with both of them, respectively. Thus, in addition to the direct antioxidant and free radical scavenging capability, melatonin also inhibited iron overloading by chelating iron and binding with the PHZ. This action of melatonin further reduces free radical generation. Based on the results, melatonin may provide therapeutic relevance to ß-thalassemia and other hemolytic RBC disorders involving oxidative stress. 

Author(s):  
Daisy Liu

Snow fungus, Tremella fuciformis, has been demonstrated to have numerous health benefits including purported chemopreventive properties due to free radical-scavenging ability. Protective effects derived from snow fungus polysaccharides are evaluated on Chinese hamster lung fibroblasts (CCL-39) exposed to carcinogen benzo[a]pyrene known to cause free radical formation and oxidative stress to cells. In this experiment, it was hypothesized that the naturally occurring polysaccharides in snow fungus are able to protect against or reduce oxidative stress-induced DNA damage. Polysaccharides were isolated through an alkaline extraction and in-vitro digestion. DNA damage was measured using the single-cell gel electrophoresis comet assay after exposure to benzo[a]pyrene and polysaccharide extract to lung fibroblasts. Results were calculated using the mean and standard deviation data of tail length and area, respectively. Each damaged cell was measured and analyzed through ImageJ Editing Software. The results indicate a promising trend which depict snow fungus polysaccharides yielding lower levels of DNA damage compared to cells exposed to benzo[a]pyrene and compared to the negative control (phosphate buffered saline and Dulbecco’s cell medium). This study suggests polysaccharides from Tremella fuciformis could truly prevent cellular DNA damage by protecting against oxidative stress.


2020 ◽  
Vol 20 (8) ◽  
pp. 1321-1327
Author(s):  
Saleh M. Abdullah ◽  
Hina Rashid

Background: Bisphenol A (BPA) is a xenobiotic that causes oxidative stress in various organs in living organisms. Blood cells are also an endpoint where BPA is known to cause oxidative stress. Blood cells, especially red blood cells (RBCs), are crucial for maintaining homeostasis and overall wellbeing of the organism. They are highly susceptible to oxidative stress induced by xenobiotics. However, there is limited data about the oxidative stress induced by BPA in blood, especially in red blood cells. This study was carried out to evaluate BPA induced oxidative stress in human RBCs in vitro and its amelioration by melatonin. Objective: To find if melatonin exerts a protective effect on the oxidative stress induced by the BPA in human red blood cells in vitro. Methods: The erythrocyte suspensions (2 ml) were divided into six groups and treated with 0, 50, 100, 150, 200, and 250 μg/ml of BPA. Another set of erythrocyte suspension with similar BPA treatment and 50 μM Melatonin per group was also set. Incubations lasted for 12 hrs in the dark. Lipid peroxidation, glutathione, glutathione reductase, catalase, and superoxide dismutase were measured as indicators of oxidative stress. Results: BPA caused a significant increase in lipid peroxidation. A decrease in GSH levels was also observed. The activities of all the studied antioxidants also decreased with BPA treatment. Melatonin was seen to mitigate the oxidative stress induced by BPA. Conclusion: Treatment of red blood cells with BPA caused an increase in oxidative stress, while melatonin decreased the induced oxidative stress.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 309
Author(s):  
Olukayode O. Aremu ◽  
Adebola O. Oyedeji ◽  
Opeoluwa O. Oyedeji ◽  
Benedicta N. Nkeh-Chungag ◽  
Constance R. Sewani Rusike

Oxidative stress has gained attention as one of the fundamental mechanisms responsible for the development of hypertension. The present study investigated in vitro and in vivo antioxidant effects of 70% ethanol-water (v/v) leaf and root extracts of T. officinale (TOL and TOR, respectively). Total phenolic and flavonoid content of plant extracts were assessed using Folin Ciocalteau and aluminium chloride colorimetric methods; while, 2,2-diphenyl-1-picrlhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) protocols were used to determine the free radical scavenging and total antioxidant capacities (TAC), respectively. The in vivo total antioxidant capacity and malondialdehyde acid (MDA) levels for lipid peroxidation tests were performed on organ homogenate samples from Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats treated with leaf extract, TOL (500 mg/kg/day) and TOR (500 mg/kg/day) for 21 days. Results showed that compared to TOR, TOL possessed significantly higher (p < 0.01) polyphenol (4.35 ± 0.15 compared to 1.14 ± 0.01) and flavonoid (23.17 ± 0.14 compared to 3 ± 0.05) content; free radical scavenging activity (EC50 0.37 compared to 1.34 mg/mL) and total antioxidant capacities (82.56% compared to 61.54% ABTS, and 156 ± 5.28 compared to 40 ± 0.31 FRAP) and both extracts showed no toxicity (LD50 > 5000 mg/kg). TOL and TOR significantly (p < 0.01) elevated TAC and reduced MDA levels in targets organs. In conclusion, T. officinale leaf extract possesses significant anti-oxidant effects which conferred significant in vivo antioxidant protection against free radical-mediated oxidative stress in L-NAME-induced hypertensive rats.


2021 ◽  
Vol 22 (13) ◽  
pp. 6946
Author(s):  
Weishun Tian ◽  
Suyoung Heo ◽  
Dae-Woon Kim ◽  
In-Shik Kim ◽  
Dongchoon Ahn ◽  
...  

Free radical generation and oxidative stress push forward an immense influence on the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Maclura tricuspidata fruit (MT) contains many biologically active substances, including compounds with antioxidant properties. The current study aimed to investigate the neuroprotective effects of MT fruit on hydrogen peroxide (H2O2)-induced neurotoxicity in SH-SY5Y cells. SH-SY5Y cells were pretreated with MT, and cell damage was induced by H2O2. First, the chemical composition and free radical scavenging properties of MT were analyzed. MT attenuated oxidative stress-induced damage in cells based on the assessment of cell viability. The H2O2-induced toxicity caused by ROS production and lactate dehydrogenase (LDH) release was ameliorated by MT pretreatment. MT also promoted an increase in the expression of genes encoding the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). MT pretreatment was associated with an increase in the expression of neuronal genes downregulated by H2O2. Mechanistically, MT dramatically suppressed H2O2-induced Bcl-2 downregulation, Bax upregulation, apoptotic factor caspase-3 activation, Mitogen-activated protein kinase (MAPK) (JNK, ERK, and p38), and Nuclear factor-κB (NF-κB) activation, thereby preventing H2O2-induced neurotoxicity. These results indicate that MT has protective effects against H2O2-induced oxidative damage in SH-SY5Y cells and can be used to prevent and protect against neurodegeneration.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Ana Paula Narata ◽  
Isabelle Filipiak ◽  
Richard Bibi ◽  
Jean Philippe Cottier ◽  
Kevin Janot

Background and Purpose: Better understanding about thrombus composition seems necessary, as treatment of acute ischemic stroke (AIS) is focus on clot chemical dissolution and mechanical extraction. We propose to evaluate whether magnetic resonance imaging (MRI) can differentiate white from red clots and estimate red blood cells percentage (RBC%) using clots with predetermined components and an index based on MRI signal intensity (SI). Material and Methods: 5 clots (A=100% fibrin, B=80% RBC, C=50% RBC, D=20% RBC, E=unknown) were fixed in gelatin-manganese solution and studied by: high-resolution 3D T1-weighted (T1MPR), T2-weighted turbo spin echo (T2TSE), T2-weighted gradient echo (T2GE), susceptibility weighted (SWI), fluid-attenuated inversion recovery (FLAIR) and diffusion weighted imaging (DWI) with apparent diffusion coefficient (ADC). SI index was calculated with clot SI and gelatin SI. Statistical analysis compared RBC-clots to fibrin-clot SI index and the correlation of RBC% and SI index in each MRI sequence. Results: Each red clot was different from clot A except clot D in FLAIR. Correlation between clots SI index and RBC concentration were found in T1MPR (r=-0.84), SWI (r=-0.79), T2GE (r=-0.72) and FLAIR (r=0.80). Linear regression resolution provided an indirect RBC estimation for clot E: 47.3 % in T1MPR, SWI 41.5%, T2GE 45.1% and FLAIR 50.9%. Histological analysis confirmed clot E composition. Conclusion: This in vitro study suggests that MRI can differentiate white from red clots except clots with low RBC% in FLAIR and also provide approximate RBC%.


2018 ◽  
Vol 251 (5-6) ◽  
pp. 735-745 ◽  
Author(s):  
Hanna Pruchnik ◽  
Aleksandra Włoch ◽  
Dorota Bonarska-Kujawa ◽  
Halina Kleszczyńska

2021 ◽  
Vol 10 (3) ◽  
pp. 2414-2428

The synthesis and antioxidant of some new pyrazole analogs were described. It is achieved by the reaction of phenyl-4-(phenylsulfonyl)-1H-pyrazole-3,5-diamine (3) with different bifunctional reagents. The free radical-induced damage and the protective effects of the newly synthesized pyrazoles were studied. These new compounds inhibit the free radical-induced oxidative hemolysis of red blood cells effectively. It was found that these compounds effectively inhibit the free radical-induced oxidative hemolysis of red blood cells. Compound 5, which contain phenolic group, and 17, which bear sulfur, nitrogen atoms, and benzothiazole ring, respectively displayed high antioxidant activity. Analogs 15, 11, 10, and 9 were proved to exhibit antioxidative activity. Structures of new pyrazoles were confirmed by spectroscopic and elemental analyses and have been screened for their antioxidant activity.


2010 ◽  
Vol 20 (11) ◽  
pp. 1313-1318 ◽  
Author(s):  
Jian-Guo Fang ◽  
Man Lu ◽  
Lan-Ping Ma ◽  
Li Yang ◽  
Long-Min Wu ◽  
...  

2022 ◽  
Vol 140 ◽  
pp. 104281
Author(s):  
Toru Hyakutake ◽  
Hiroki Abe ◽  
Yohei Miyoshi ◽  
Manabu Yasui ◽  
Rina Suzuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document