scholarly journals Lablab purpureus Protects HaCaT Cells from Oxidative Stress-Induced Cell Death through Nrf2-Mediated Heme Oxygenase-1 Expression via the Activation of p38 and ERK1/2

2020 ◽  
Vol 21 (22) ◽  
pp. 8583
Author(s):  
Nurud Diniyah ◽  
Md Badrul Alam ◽  
Hee-Jeong Choi ◽  
Sang-Han Lee

Ultraviolet B (UV-B) radiation induces the extreme production of either reactive oxygen species (ROS) or inflammatory mediators. The aim of this study was to evaluate the antioxidant activities of 70% ethanolic extract of Lablab purpureus (LPE) and the underlying mechanisms using HaCaT cells exposed to UV-B. High-performance liquid chromatography (HPLC) confirmed the presence of gallic acid, catechin, and epicatechin in LPE. LPE was shown to have a very potent capacity to scavenge free radicals. The results showed that LPE prevented DNA damage and inhibited the generation of ROS in HaCaT cells without causing any toxicity. LPE increased the expression of endogenous antioxidant enzymes such as superoxide dismutase-1 and catalase. Furthermore, LPE treatment facilitates the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf-2), boosting the phase II detoxifying enzyme heme oxygenase-1 (HO-1) leading to the combatting of oxidative stress. However, pretreatment of LPE also caused the phosphorylation of mitogen-activated protein kinases (MAPK kinase) (p38 kinase) and extracellular signal-regulated kinase (ERK), whereas treatment with p38 and ERK inhibitors substantially suppressed LPE-induced Nrf2 and heme oxygenase (HO)-1 expression. These findings suggest that LPE exhibits antioxidant activity via Nrf-2-mediated HO-1 signaling through the activation of p38 and ERK, indicating that LPE can potentially be used as a remedy to combat oxidative stress-induced disorder.

2010 ◽  
Vol 88 (3) ◽  
pp. 379-387 ◽  
Author(s):  
Zhouli Ni ◽  
Kenneth B. Storey

Mammalian hibernation is composed of long periods of deep torpor interspersed with brief periods of arousal in which the animals, fueled by high rates of oxygen-based thermogenesis in brown adipose tissue and skeletal muscle, power themselves back to euthermic (~37 °C) body temperatures. Strong antioxidant defences are important both for long-term cytoprotection during torpor and for coping with high rates of reactive oxygen species generated during arousal. The present study shows that the antioxidant enzyme heme oxygenase 1 (HO1) is strongly upregulated in selected organs of thirteen-lined ground squirrels (Spermophilus tridecemlineatus) during hibernation. Compared with euthermic controls, HO1 mRNA transcript levels were 1.4- to 3.8-fold higher in 5 organs of hibernating squirrels, whereas levels of the constitutive isozyme HO2 were unchanged. Similarly, HO1 protein levels increased by 1.5- to 2.0-fold in liver, kidney, heart, and brain during torpor. Strong increases in the levels of the Nrf2 transcription factor and its heterodimeric partner protein, MafG, in several tissues indicated the mechanism of activation of hibernation-responsive HO1 gene expression. Furthermore, subcellular distribution studies with liver showed increased nuclear translocation of both Nrf2 and MafG in torpid animals. The data are consistent with the suggestion that Nrf2-mediated upregulation of HO1 expression provides enhanced antioxidant defence to counter oxidative stress in hibernating squirrels during torpor and (or) arousal.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1183
Author(s):  
Sylvia Maina ◽  
Da Hye Ryu ◽  
Jwa Yeong Cho ◽  
Da Seul Jung ◽  
Jai-Eok Park ◽  
...  

The effect of salt treatment on Brassica carinata (BC) microgreens grown under different light wavelengths on glucosinolates (GLs) and phenolic compounds were evaluated. Quantifiable GLs were identified using ultra-high performance-quadrupole time of flight mass spectrometry. Extracts’ ability to activate antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) was evaluated on human colorectal carcinoma cells (HCT116). Furthermore, BC compounds’ ability to activate expression of nuclear transcription factor-erythroid 2 related factor (Nrf2) and heme-oxygenase-1 (HO-1) proteins was examined using specific antibodies on HCT116 cells. Sinigrin (SIN) was the abundant GLs of the six compounds identified and its content together with total aliphatic GLs increased in saline conditions. Fluorescent (FL) and blue plus red (B1R1) lights were identified as stable cultivation conditions for microgreens, promoting biomass and glucobrassicin contents, whereas other identified individual and total indole GLs behaved differently in saline and non-saline environments. Blue light-emitting diodes and FL light in saline treatments mostly enhanced SIN, phenolics and antioxidant activities. The increased SOD and CAT activities render the BC microgreens suitable for lowering oxidative stress. Additionally, activation of Nrf2, and HO-1 protein expression by the GLs rich extracts, demonstrate their potential to treat and prevent oxidative stress and inflammatory disorders. Therefore, effective salt treatments and light exposure to BC microgreens present an opportunity for targeted regulation of growth and accumulation of bioactive metabolites.


2005 ◽  
Vol 289 (5) ◽  
pp. L739-L749 ◽  
Author(s):  
Po-Len Liu ◽  
Yuh-Lien Chen ◽  
Yung-Hsiang Chen ◽  
Shing-Jong Lin ◽  
Yu Ru Kou

Although a link between toxic smoke and oxidant lung vascular injury has been indicated, the cellular mechanisms of smoke-induced injury to lung endothelial cells are unknown. We investigated oxidative stress and apoptosis induced by wood smoke extract (SE) in human pulmonary artery endothelial cells (HPAECs) and delineated their relationship. We found that SE increased intracellular reactive oxygen species (ROS), depleted intracellular glutathione, and upregulated Cu/Zn superoxide dismutase and heme oxygenase-1 (2 antioxidant enzymes), but it failed to alter the expression of catalase and glutathione peroxidase. In addition, SE promoted apoptosis as indicated by the external exposure of membrane phosphatidylserine, the loss of mitochondrial membrane potential, an increase in the level of Bax (a proapoptotic protein), and enhanced DNA fragmentation. This apoptosis was associated with mitochondrial-to-nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G (EndoG) (2 apoptogenic proteins) but was independent of caspase cascade activation. Whereas N-acetylcysteine (an antioxidant) effectively reversed the SE-induced increase in ROS and depletion of glutathione, it also suppressed SE-induced nuclear translocation of either AIF or EndoG and prevented the enhanced DNA fragmentation that would have resulted from this. We conclude that 1) although SE upregulates Cu/Zn superoxide dismutase and heme oxygenase-1, it nevertheless increases intracellular oxidative stress in HPAECs, and 2) SE promotes oxidative stress-mediated caspase-independent HPAEC apoptosis that involves mitochondrial-to-nuclear translocation of AIF and EndoG. Thus modulations of the expression of antioxidant enzymes and the caspase-independent apoptotic pathway are possible target choices for potential therapeutic regimes to treat smoke-induced lung injury.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 847
Author(s):  
Giuseppe Antonio Malfa ◽  
Barbara Tomasello ◽  
Rosaria Acquaviva ◽  
Alfonsina La Mantia ◽  
Francesco Pappalardo ◽  
...  

Pathophysiological mechanisms correlating diabetes mellitus with associated complications are still not completely clear, even though oxidative stress seems to play a pivotal role. Literature data suggest that cell damages induced by hyperglycemia, although multifactorial, have a common pathway in oxidative/nitrosative stress. The present study evaluated the effects of Betula etnensis Raf. bark extract, a plant belonging to the Betulaceae family endemic to Sicily, on oxidative stress and in preventing and/or retarding diabetes-associated complications in streptozotocin diabetic rats treated with the extract at dose of 0.5 g/kg body weight per day for 28 consecutive days. The extract administration significant decreased food and water intake, fasting blood glucose, weight loss and polyuria, compared with untreated diabetic animals. Furthermore, oxidative stress markers particularly, lipid hydroperoxides (LOOH) and nitrite/nitrate levels, non-proteic thiol groups (RSH), γ-glutamyl-cysteine-synthetase (γ-GCS) activities and expression, heme oxygenase-1 (HO-1), endothelial and inducible nitric oxide synthases (i-NOS e-NOS) expression, significantly changed by streptozocin treatment, were markedly restored both in plasma and tissues together with nuclear sirtuins activity (Sirt1). Results suggested that B. etnensis bark alcoholic extract is able to counteract oxidative stress and to ameliorate some general parameters related to diabetes.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


2021 ◽  
Vol 22 (15) ◽  
pp. 8253
Author(s):  
Jung-Yeon Kim ◽  
Yongmin Choi ◽  
Jaechan Leem ◽  
Jeong Eun Song

Cholestatic liver diseases can progress to end-stage liver disease and reduce patients’ quality of life. Although their underlying mechanisms are still incompletely elucidated, oxidative stress is considered to be a key contributor to these diseases. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that displays antioxidant action. It has been found that this enzyme plays a protective role against various inflammatory diseases. However, the role of HO-1 in cholestatic liver diseases has not yet been investigated. Here, we examined whether pharmacological induction of HO-1 by cobalt protoporphyrin (CoPP) ameliorates cholestatic liver injury. To this end, a murine model of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet feeding was used. Administration of CoPP ameliorated liver damage and cholestasis with HO-1 upregulation in DDC diet-fed mice. Induction of HO-1 by CoPP suppressed the DDC diet-induced oxidative stress and hepatocyte apoptosis. In addition, CoPP attenuated cytokine production and inflammatory cell infiltration. Furthermore, deposition of the extracellular matrix and expression of fibrosis-related genes after DDC feeding were also decreased by CoPP. HO-1 induction decreased the number of myofibroblasts and inhibited the transforming growth factor-β pathway. Altogether, these data suggest that the pharmacological induction of HO-1 ameliorates cholestatic liver disease by suppressing oxidative stress, hepatocyte apoptosis, and inflammation.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e64372 ◽  
Author(s):  
André Quincozes-Santos ◽  
Larissa Daniele Bobermin ◽  
Alexandra Latini ◽  
Moacir Wajner ◽  
Diogo Onofre Souza ◽  
...  

2003 ◽  
Vol 285 (2) ◽  
pp. H499-H506 ◽  
Author(s):  
Stéphanie Héon ◽  
Martin Bernier ◽  
Nicolas Servant ◽  
Stevan Dostanic ◽  
Chunlei Wang ◽  
...  

Doxorubicin (DOX), an anticancer drug, causes a dose-dependent cardiotoxicity. Some evidence suggests that female children have an increased risk for DOX-mediated cardiac damage. To determine whether the iron chelator dexrazoxane (DXR) could reduce DOX-induced cardiotoxicity in the young, we injected day 10 neonate female and male rat pups with a single dose of saline or DOX, DXR, or DXR + DOX (20:1). We followed body weight gain with growth, measured cardiac hypertrophy after a 2-wk swim exercise program, markers of apoptosis (Bcl-2, BAX, BNIP1, caspase 3 activation), oxidative stress (heme oxygenase 1, protein carbonyl levels), the chaperone protein clusterin, and the transcriptional activator early growth response gene-1 (Egr-1) in hearts of nonexercised and exercised rats on neonate day 38. All DOX-alone and DXR + DOX-treated rats showed decreased weight gain, with female rats affected earlier than male rats. DXR-alone, DOX-alone, and DXR + DOX-treated rats had an increased heart weight-to-body weight (heart wt/body wt) ratio after the exercise program with female rats showing the largest increase in heart wt/body wt. Drug-treated females also showed increased cardiac apoptosis, as measured by the increased expression of the proapoptotic proteins BAX and BNIP1 and the appearance of caspase 3 activation products, and oxidative stress, as measured by increased heme oxygenase 1 expression, and reduced Egr-1 and clusterin expression when compared with the similarly treated male rats. We conclude that DXR preinjection did not reduce DOX-induced noncardiac and cardiac damage and that young female rats were more susceptible to DXR and DOX toxicities than age-matched male rats.


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Jenna Leclerc ◽  
Alex Dang ◽  
Juan Santiago-Moreno ◽  
Sylvain Dore

Intracerebral hemorrhage (ICH) is a stroke subtype associated with high morbidity and mortality. With breakdown of the blood-brain barrier and entry of toxic blood components and metabolites within the brain, a highly oxidative environment ensues and leads to a toxic neuroinflammatory cascade. A major cause of the debilitation following brain hemorrhage is due to the direct toxicity of blood components, notably hemoglobin (Hb), the most upstream precipitating factor in the cascade. The acute phase plasma protein haptoglobin (Hp) binds Hb and inhibits its cytotoxic, pro-oxidative, and pro-inflammatory properties. In this study, we investigated whether the local and specific overexpression of Hp would aid in the safe detoxification and clearance of free Hb, thereby protecting the neuropil from Hb-mediated oxidative stress and improving ICH outcomes. Hp was overexpressed locally within the brain using uniquely designed adeno-associated viral vectors and ICH was induced using the intrastriatal autologous whole blood injection model. Functional outcomes were assessed by a 24-point neurological deficit score. At 72h post-hemorrhage, mice were sacrificed and brains collected for histological staining. Hp-overexpressing mice demonstrated smaller lesion volumes (p<0.05) with less blood accumulation (p<0.05) and improve neurologic status after ICH (p<0.05) when compared to an identically treated control group (n=11-13/group). Histological staining for Iba-1, GFAP, heme oxygenase-1, 4-hydroxynonenal, ferric iron, and myeloperoxidase was performed and revealed: 1) significantly less heme oxygenase-1 expression and lipid peroxidation, 2) a trend towards reduced peripheral neutrophil infiltration, 3) significantly increased cortical microgliosis and cortical and striatal astrogliosis, and 4) no changes in ferric iron content or striatal microgliosis. In conclusion, Hp overexpression in the brain reduces ICH-induced brain injury and improves functional outcomes. Locally modulating brain Hp levels could represent an important clinically relevant strategy for the treatment of ICH.


Sign in / Sign up

Export Citation Format

Share Document