scholarly journals LytR-CpsA-Psr Glycopolymer Transferases: Essential Bricks in Gram-Positive Bacterial Cell Wall Assembly

2021 ◽  
Vol 22 (2) ◽  
pp. 908
Author(s):  
Cordula Stefanović ◽  
Fiona F. Hager ◽  
Christina Schäffer

The cell walls of Gram-positive bacteria contain a variety of glycopolymers (CWGPs), a significant proportion of which are covalently linked to the peptidoglycan (PGN) scaffolding structure. Prominent CWGPs include wall teichoic acids of Staphylococcus aureus, streptococcal capsules, mycobacterial arabinogalactan, and rhamnose-containing polysaccharides of lactic acid bacteria. CWGPs serve important roles in bacterial cellular functions, morphology, and virulence. Despite evident differences in composition, structure and underlaying biosynthesis pathways, the final ligation step of CWGPs to the PGN backbone involves a conserved class of enzymes—the LytR-CpsA-Psr (LCP) transferases. Typically, the enzymes are present in multiple copies displaying partly functional redundancy and/or preference for a distinct CWGP type. LCP enzymes require a lipid-phosphate-linked glycan precursor substrate and catalyse, with a certain degree of promiscuity, CWGP transfer to PGN of different maturation stages, according to in vitro evidence. The prototype attachment mode is that to the C6-OH of N-acetylmuramic acid residues via installation of a phosphodiester bond. In some cases, attachment proceeds to N-acetylglucosamine residues of PGN—in the case of the Streptococcus agalactiae capsule, even without involvement of a phosphate bond. A novel aspect of LCP enzymes concerns a predicted role in protein glycosylation in Actinomyces oris. Available crystal structures provide further insight into the catalytic mechanism of this biologically important class of enzymes, which are gaining attention as new targets for antibacterial drug discovery to counteract the emergence of multidrug resistant bacteria.

2011 ◽  
Vol 55 (5) ◽  
pp. 2042-2053 ◽  
Author(s):  
Roya Zoraghi ◽  
Raymond H. See ◽  
Peter Axerio-Cilies ◽  
Nag S. Kumar ◽  
Huansheng Gong ◽  
...  

ABSTRACTNovel classes of antimicrobials are needed to address the challenge of multidrug-resistant bacteria such as methicillin-resistantStaphylococcus aureus(MRSA). Using the architecture of the MRSA interactome, we identified pyruvate kinase (PK) as a potential novel drug target based upon it being a highly connected, essential hub in the MRSA interactome. Structural modeling, including X-ray crystallography, revealed discrete features of PK in MRSA, which appeared suitable for the selective targeting of the bacterial enzyme.In silicolibrary screening combined with functional enzymatic assays identified an acyl hydrazone-based compound (IS-130) as a potent MRSA PK inhibitor (50% inhibitory concentration [IC50] of 0.1 μM) with >1,000-fold selectivity over human PK isoforms. Medicinal chemistry around the IS-130 scaffold identified analogs that more potently and selectively inhibited MRSA PK enzymatic activity andS. aureusgrowthin vitro(MIC of 1 to 5 μg/ml). These novel anti-PK compounds were found to possess antistaphylococcal activity, including both MRSA and multidrug-resistantS. aureus(MDRSA) strains. These compounds also exhibited exceptional antibacterial activities against other Gram-positive genera, including enterococci and streptococci. PK lead compounds were found to be noncompetitive inhibitors and were bactericidal. In addition, mutants with significant increases in MICs were not isolated after 25 bacterial passages in culture, indicating that resistance may be slow to emerge. These findings validate the principles of network science as a powerful approach to identify novel antibacterial drug targets. They also provide a proof of principle, based upon PK in MRSA, for a research platform aimed at discovering and optimizing selective inhibitors of novel bacterial targets where human orthologs exist, as leads for anti-infective drug development.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Antonio Sorlozano-Puerto ◽  
Maria Albertuz-Crespo ◽  
Isaac Lopez-Machado ◽  
Juan Jose Ariza-Romero ◽  
Alberto Baños-Arjona ◽  
...  

Background. The aim of this study was to compare the in vitro antibacterial activity of two compounds derived from Alliaceae, PTS (propyl-propane-thiosulfinate), and PTSO (propyl-propane-thiosulfonate), with that of other antibiotics commonly used against bacteria isolated from humans. Materials and Methods. A total of 212 gram-negative bacilli and 267 gram-positive cocci isolated from human clinical samples and resistant to at least one group of antibiotics were selected. In order to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) to various antibiotics as well as PTS and PTSO, all isolates underwent broth microdilution assay. Results. PTS showed moderate activity against Enterobacteriaceae with MIC50 (and MBC50) and MIC90 (and MBC90) values of 256-512 mg/L, while PTSO showed greater activity with MIC50 and MIC90 values of 64-128 mg/L and MBC50 and MBC90 values of 128-512 mg/L. These data show the bactericidal activity of both compounds and indicate that PTSO was more active than PTS against this group of bacteria. Both compounds showed lower activity against P. aeruginosa (MIC50 = 1024 mg/L, MIC90 = 2048 mg/L, MBC50 = 2048 mg/L, and MBC90 = 2048 mg/L, for PTS; MIC50 = 512 mg/L, MIC90 = 1024 mg/L, MBC50 = 512 mg/L, and MBC90 = 2048 mg/L, for PTSO) compared to those obtained in others nonfermenting gram-negative bacilli (MIC50 = 128 mg/L, MIC90 = 512 mg/L, MBC50 = 128 mg/L, and MBC90 = 512 mg/L, for PTS; MIC50 = 64 mg/L, MIC90 = 256 mg/L, MBC50 = 64 mg/L, and MBC90 = 256 mg/L, for PTSO) and also indicate the bactericidal activity of both compounds against these groups of bacteria. Finally, the activity against S. aureus, E. faecalis, and S. agalactiae was higher than that observed against enterobacteria, especially in the case of PTSO (MIC50 = 8 mg/L, MIC90 = 8 mg/L, MBC50 = 32 mg/L, and MBC90 = 64 mg/L, in S. aureus; MIC50 = 4 mg/L, MIC90 = 8 mg/L, MBC50 = 8 mg/L, and MBC90 = 16 mg/L, in E. faecalis and S. agalactiae). Conclusion. PTS and PTSO have a significant broad spectrum antibacterial activity against multiresistant bacteria isolated from human clinical samples. Preliminary results in present work provide basic and useful information for development and potential use of these compounds in the treatment of human infections.


2017 ◽  
Vol 66 (4) ◽  
pp. 533-536 ◽  
Author(s):  
Moreno Bondi ◽  
Anna Mazzini ◽  
Simona de Niederhäusern ◽  
Ramona Iseppi ◽  
Patrizia Messi

The authors studied the in vitro antibacterial activity of the photo-activated porphyrin meso-tri(N-methyl-pyridyl), mono(N-tetradecyl-pyridyl)porphine (C14) against four multidrug-resistant bacteria: Staphylococcus aureus, Enterococcus faecalis (Gram-positive), Escherichia coli, Pseudomonas aeruginosa (Gram-negative). Using 10 μg/ml of porphyrin and 60 sec irradiation we observed the remarkable susceptibility of S. aureus and E. faecalis to treatment while, under the same conditions, E. coli and P. aeruginosa showed very low susceptibility. In a later stage, suspensions of Gram-negative bacteria were processed with EDTA before photo-activation, obtaining a significant decrease in viable counts. In view of the results, if the combination of low porphyrin concentrations and short irradiation times will be effective in vivo also, this approach could be a possible alternative to antibiotics, in particular against localized infections due to multidrug-resistant microorganisms.


2020 ◽  
Author(s):  
Franziska Jäger ◽  
Anaïs Lamy ◽  
Nina Guerini ◽  
Wei-Sheng Sun ◽  
Ronnie P-A Berntsson

AbstractMultidrug resistant bacteria are one of the most important current threats to public health and a serious problem in hospital acquired infections (HAIs). Most antibiotic resistance genes are acquired via conjugative gene transfer, in a process that is mediated by a protein machinery called the Type 4 Secretion System (T4SS). The core of the T4SS is a multiprotein complex that spans both the cell wall and cellular membrane(s), serving as a channel for macromolecular secretion. Although the majority of multidrug resistant bacteria responsible for HAIs are of Gram-positive origin, with Enterococci being major contributors, mostly Gram-negative T4SSs have been characterized. Here we describe the structure and organisation of PrgL, one of the seven membrane proteins forming the translocation channel of the T4SS encoded by the pCF10 plasmid from Enterococcus faecalis. We present the structure of the C-terminal domain of PrgL, which displays similarity to VirB8 proteins of Gram-negative secretion systems. PrgL forms dimers and higher order oligomers but does not interact strongly with the other T4SS components. In vitro experiments show that the soluble domain alone is enough to drive both dimerization and dodecamerisation, with a dimerization interface that differs from all other known VirB8-like proteins. Our findings provide insight into the molecular building blocks of Gram-positive T4SS, highlighting similarities but also unique features in PrgL compared to other VirB8-like proteins.


2020 ◽  
Vol 15 (3) ◽  
pp. 193-206
Author(s):  
Brognara Lorenzo ◽  
Salmaso Luca ◽  
Mazzotti Antonio ◽  
Di M. Alberto ◽  
Faldini Cesare ◽  
...  

Background: Chronic wounds are commonly associated with polymicrobial biofilm infections. In the last years, the extensive use of antibiotics has generated several antibiotic-resistant variants. To overcome this issue, alternative natural treatments have been proposed, including the use of microorganisms like probiotics. The aim of this manuscript was to review current literature concerning the application of probiotics for the treatment of infected chronic wounds. Methods: Relevant articles were searched in the Medline database using PubMed and Scholar, using the keywords “probiotics” and “wound” and “injuries”, “probiotics” and “wound” and “ulcer”, “biofilm” and “probiotics” and “wound”, “biofilm” and “ulcer” and “probiotics”, “biofilm” and “ulcer” and “probiotics”, “probiotics” and “wound”. Results: The research initially included 253 articles. After removal of duplicate studies, and selection according to specific inclusion and exclusion criteria, 19 research articles were included and reviewed, accounting for 12 in vitro, 8 in vivo studies and 2 human studies (three articles dealing with animal experiments included also in vitro testing). Most of the published studies about the effects of probiotics for the treatment of infected chronic wounds reported a partial inhibition of microbial growth, biofilm formation and quorum sensing. Discussion: The application of probiotics represents an intriguing option in the treatment of infected chronic wounds with multidrug-resistant bacteria; however, current results are difficult to compare due to the heterogeneity in methodology, laboratory techniques, and applied clinical protocols. Lactobacillus plantarum currently represents the most studied strain, showing a positive application in burns compared to guideline treatments, and an additional mean in chronic wound infections. Conclusions: Although preliminary evidence supports the use of specific strains of probiotics in certain clinical settings such as infected chronic wounds, large, long-term clinical trials are still lacking, and further research is needed.


2020 ◽  
Vol 9 (1) ◽  
pp. 416-428 ◽  
Author(s):  
Raghad R. Alzahrani ◽  
Manal M. Alkhulaifi ◽  
Nouf M. Al-Enazi

AbstractThe adaptive nature of algae results in producing unique chemical components that are gaining attention due to their efficiency in many fields and abundance. In this study, we screened the phytochemicals from the brown alga Hydroclathrus clathratus and tested its ability to produce silver nanoparticles (AgNPs) extracellularly for the first time. Lastly, we investigated its biological activity against a variety of bacteria. The biosynthesized nanoparticles were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and energy-dispersive spectroscopy. The biological efficacy of AgNPs was tested against eighteen different bacteria, including seven multidrug-resistant bacteria. Phytochemical screening of the alga revealed the presence of saturated and unsaturated fatty acids, sugars, carboxylic acid derivatives, triterpenoids, steroids, and other components. Formed AgNPs were stable and ranged in size between 7 and 83 nm and presented a variety of shapes. Acinetobacter baumannii, Staphylococcus aureus, Methicillin-resistant S. aureus (MRSA), and MDR A. baumannii were the most affected among the bacteria. The biofilm formation and development assay presented a noteworthy activity against MRSA, with an inhibition percentage of 99%. Acknowledging the future of nano-antibiotics encourages scientists to explore and enhance their potency, notably if they were obtained using green, rapid, and efficient methods.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 751
Author(s):  
Marwa Reda Bakkar ◽  
Ahmed Hassan Ibrahim Faraag ◽  
Elham R. S. Soliman ◽  
Manar S. Fouda ◽  
Amir Mahfouz Mokhtar Sarguos ◽  
...  

COVID-19 is a pandemic disease caused by the SARS-CoV-2, which continues to cause global health and economic problems since emerging in China in late 2019. Until now, there are no standard antiviral treatments. Thus, several strategies were adopted to minimize virus transmission, such as social distancing, face covering protection and hand hygiene. Rhamnolipids are glycolipids produced formally by Pseudomonas aeruginosa and as biosurfactants, they were shown to have broad antimicrobial activity. In this study, we investigated the antimicrobial activity of rhamnolipids against selected multidrug resistant bacteria and SARS-CoV-2. Rhamnolipids were produced by growing Pseudomonas aeruginosa strain LeS3 in a new medium formulated from chicken carcass soup. The isolated rhamnolipids were characterized for their molecular composition, formulated into nano-micelles, and the antibacterial activity of the nano-micelles was demonstrated in vitro against both Gram-negative and Gram-positive drug resistant bacteria. In silico studies docking rhamnolipids to structural and non-structural proteins of SARS-CoV-2 was also performed. We demonstrated the efficient and specific interaction of rhamnolipids with the active sites of these proteins. Additionally, the computational studies suggested that rhamnolipids have membrane permeability activity. Thus, the obtained results indicate that SARS-CoV-2 could be another target of rhamnolipids and could find utility in the fight against COVID-19, a future perspective to be considered.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 877
Author(s):  
Ana Mafalda Pinto ◽  
Alberta Faustino ◽  
Lorenzo M. Pastrana ◽  
Manuel Bañobre-López ◽  
Sanna Sillankorva

Pseudomonas aeruginosa is responsible for nosocomial and chronic infections in healthcare settings. The major challenge in treating P. aeruginosa-related diseases is its remarkable capacity for antibiotic resistance development. Bacteriophage (phage) therapy is regarded as a possible alternative that has, for years, attracted attention for fighting multidrug-resistant infections. In this work, we characterized five phages showing different lytic spectrums towards clinical isolates. Two of these phages were isolated from the Russian Microgen Sextaphage formulation and belong to the Phikmvviruses, while three Pbunaviruses were isolated from sewage. Different phage formulations for the treatment of P. aeruginosa PAO1 resulted in diversified time–kill outcomes. The best result was obtained with a formulation with all phages, prompting a lower frequency of resistant variants and considerable alterations in cell motility, resulting in a loss of 73.7% in swimming motility and a 79% change in swarming motility. These alterations diminished the virulence of the phage-resisting phenotypes but promoted their growth since most became insensitive to a single or even all phages. However, not all combinations drove to enhanced cell killings due to the competition and loss of receptors. This study highlights that more caution is needed when developing cocktail formulations to maximize phage therapy efficacy. Selecting phages for formulations should consider the emergence of phage-resistant bacteria and whether the formulations are intended for short-term or extended antibacterial application.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaitlin S. Witherell ◽  
Jason Price ◽  
Ashok D. Bandaranayake ◽  
James Olson ◽  
Douglas R. Call

AbstractMultidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Emerson Danguy Cavassin ◽  
Luiz Francisco Poli de Figueiredo ◽  
José Pinhata Otoch ◽  
Marcelo Martins Seckler ◽  
Roberto Angelo de Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document