scholarly journals Imprinted Genes and Multiple Sclerosis: What Do We Know?

2021 ◽  
Vol 22 (3) ◽  
pp. 1346
Author(s):  
Natalia Baulina ◽  
Ivan Kiselev ◽  
Olga Favorova

Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disease of the central nervous system that arises from interplay between non-genetic and genetic risk factors. The epigenetics functions as a link between these factors, affecting gene expression in response to external influence, and therefore should be extensively studied to improve the knowledge of MS molecular mechanisms. Among others, the epigenetic mechanisms underlie the establishment of parent-of-origin effects that appear as phenotypic differences depending on whether the allele was inherited from the mother or father. The most well described manifestation of parent-of-origin effects is genomic imprinting that causes monoallelic gene expression. It becomes more obvious that disturbances in imprinted genes at the least affecting their expression do occur in MS and may be involved in its pathogenesis. In this review we will focus on the potential role of imprinted genes in MS pathogenesis.

2021 ◽  
Vol 118 (29) ◽  
pp. e2104445118
Author(s):  
Jessica A. Rodrigues ◽  
Ping-Hung Hsieh ◽  
Deling Ruan ◽  
Toshiro Nishimura ◽  
Manoj K. Sharma ◽  
...  

Parent-of-origin–dependent gene expression in mammals and flowering plants results from differing chromatin imprints (genomic imprinting) between maternally and paternally inherited alleles. Imprinted gene expression in the endosperm of seeds is associated with localized hypomethylation of maternally but not paternally inherited DNA, with certain small RNAs also displaying parent-of-origin–specific expression. To understand the evolution of imprinting mechanisms in Oryza sativa (rice), we analyzed imprinting divergence among four cultivars that span both japonica and indica subspecies: Nipponbare, Kitaake, 93-11, and IR64. Most imprinted genes are imprinted across cultivars and enriched for functions in chromatin and transcriptional regulation, development, and signaling. However, 4 to 11% of imprinted genes display divergent imprinting. Analyses of DNA methylation and small RNAs revealed that endosperm-specific 24-nt small RNA–producing loci show weak RNA-directed DNA methylation, frequently overlap genes, and are imprinted four times more often than genes. However, imprinting divergence most often correlated with local DNA methylation epimutations (9 of 17 assessable loci), which were largely stable within subspecies. Small insertion/deletion events and transposable element insertions accompanied 4 of the 9 locally epimutated loci and associated with imprinting divergence at another 4 of the remaining 8 loci. Correlating epigenetic and genetic variation occurred at key regulatory regions—the promoter and transcription start site of maternally biased genes, and the promoter and gene body of paternally biased genes. Our results reinforce models for the role of maternal-specific DNA hypomethylation in imprinting of both maternally and paternally biased genes, and highlight the role of transposition and epimutation in rice imprinting evolution.


2020 ◽  
Vol 27 (4) ◽  
pp. 163-177
Author(s):  
Mohammad Sadegh Hesamian ◽  
Nahid Eskandari

Multiple sclerosis (MS) is an unpredictable disease of the central nervous system. The cause of MS is not known completely, and pathology is specified by involved demyelinated areas in the white and gray matter of the brain and spinal cord. Inflammation and peripheral tolerance breakdown due to Treg cell defects and/or effector cell resistance are present at all stages of the disease. Several invading peripheral immune cells are included in the process of the disease such as macrophages, CD8+ T cells, CD4+ T cells, B cells, and plasma cells. Trace elements are known as elements found in soil, plants, and living organisms in small quantities. Some of them (e.g., Al, Cu, Zn, Mn, and Se) are essential for the body’s functions like catalysts in enzyme systems, energy metabolism, etc. Al toxicity and Cu, Zn, and Se toxicity and deficiency can affect the immune system and following neuron inflammation and degeneration. These processes may result in MS pathology. Of course, factors such as lifestyle, environment, and industrialization can affect levels of trace elements in the human body.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Godfrey Grech ◽  
Marieke von Lindern

Organisation of RNAs into functional subgroups that are translated in response to extrinsic and intrinsic factors underlines a relatively unexplored gene expression modulation that drives cell fate in the same manner as regulation of the transcriptome by transcription factors. Recent studies on the molecular mechanisms of inflammatory responses and haematological disorders indicate clearly that the regulation of mRNA translation at the level of translation initiation, mRNA stability, and protein isoform synthesis is implicated in the tight regulation of gene expression. This paper outlines how these posttranscriptional control mechanisms, including control at the level of translation initiation factors and the role of RNA binding proteins, affect hematopoiesis. The clinical relevance of these mechanisms in haematological disorders indicates clearly the potential therapeutic implications and the need of molecular tools that allow measurement at the level of translational control. Although the importance of miRNAs in translation control is well recognised and studied extensively, this paper will exclude detailed account of this level of control.


2007 ◽  
Vol 66 (1) ◽  
pp. 131-155 ◽  
Author(s):  
Miguel López ◽  
Sulay Tovar ◽  
María J. Vázquez ◽  
Lynda M. Williams ◽  
Carlos Diéguez

More than 70 years ago the glucostatic, lipostatic and aminostatic hypotheses proposed that the central nervous system sensed circulating levels of different metabolites, changing feeding behaviour in response to the levels of those molecules. In the last 20 years the rapid increase in obesity and associated pathologies in developed countries has involved a substantial increase in the knowledge of the physiological and molecular mechanism regulating body mass. This effort has resulted in the recent discovery of new peripheral signals, such as leptin and ghrelin, as well as new neuropeptides, such as orexins, involved in body-weight homeostasis. The present review summarises research into energy balance, starting from the original classical hypotheses proposing metabolite sensing, through peripheral tissue–brain interactions and coming full circle to the recently-discovered role of hypothalamic fatty acid synthase in feeding regulation. Understanding these molecular mechanisms will provide new pharmacological targets for the treatment of obesity and appetite disorders.


2021 ◽  
Vol 13 ◽  
Author(s):  
Xiangyue Zhou ◽  
Youwei Li ◽  
Cameron Lenahan ◽  
Yibo Ou ◽  
Minghuan Wang ◽  
...  

Stroke is the destruction of brain function and structure, and is caused by either cerebrovascular obstruction or rupture. It is a disease associated with high mortality and disability worldwide. Brain edema after stroke is an important factor affecting neurologic function recovery. The glymphatic system is a recently discovered cerebrospinal fluid (CSF) transport system. Through the perivascular space and aquaporin 4 (AQP4) on astrocytes, it promotes the exchange of CSF and interstitial fluid (ISF), clears brain metabolic waste, and maintains the stability of the internal environment within the brain. Excessive accumulation of fluid in the brain tissue causes cerebral edema, but the glymphatic system plays an important role in the process of both intake and removal of fluid within the brain. The changes in the glymphatic system after stroke may be an important contributor to brain edema. Understanding and targeting the molecular mechanisms and the role of the glymphatic system in the formation and regression of brain edema after stroke could promote the exclusion of fluids in the brain tissue and promote the recovery of neurological function in stroke patients. In this review, we will discuss the physiology of the glymphatic system, as well as the related mechanisms and therapeutic targets involved in the formation of brain edema after stroke, which could provide a new direction for research against brain edema after stroke.


2016 ◽  
Vol 2016 ◽  
pp. 1-24 ◽  
Author(s):  
José de Jesús Guerrero-García ◽  
Lucrecia Carrera-Quintanar ◽  
Rocío Ivette López-Roa ◽  
Ana Laura Márquez-Aguirre ◽  
Argelia Esperanza Rojas-Mayorquín ◽  
...  

Multiple Sclerosis (MS) is an autoimmune disorder of the Central Nervous System that has been associated with several environmental factors, such as diet and obesity. The possible link between MS and obesity has become more interesting in recent years since the discovery of the remarkable properties of adipose tissue. Once MS is initiated, obesity can contribute to increased disease severity by negatively influencing disease progress and treatment response, but, also, obesity in early life is highly relevant as a susceptibility factor and causally related risk for late MS development. The aim of this review was to discuss recent evidence about the link between obesity, as a chronic inflammatory state, and the pathogenesis of MS as a chronic autoimmune and inflammatory disease. First, we describe the main cells involved in MS pathogenesis, both from neural tissue and from the immune system, and including a new participant, the adipocyte, focusing on their roles in MS. Second, we concentrate on the role of several adipokines that are able to participate in the mediation of the immune response in MS and on the possible cross talk between the latter. Finally, we explore recent therapy that involves the transplantation of adipocyte precursor cells for the treatment of MS.


2018 ◽  
Vol 10 (462) ◽  
pp. eaat4301 ◽  
Author(s):  
Raquel Planas ◽  
Radleigh Santos ◽  
Paula Tomas-Ojer ◽  
Carolina Cruciani ◽  
Andreas Lutterotti ◽  
...  

Multiple sclerosis is an immune-mediated autoimmune disease of the central nervous system that develops in genetically susceptible individuals and likely requires environmental triggers. The autoantigens and molecular mimics triggering the autoimmune response in multiple sclerosis remain incompletely understood. By using a brain-infiltrating CD4+ T cell clone that is clonally expanded in multiple sclerosis brain lesions and a systematic approach for the identification of its target antigens, positional scanning peptide libraries in combination with biometrical analysis, we have identified guanosine diphosphate (GDP)–l-fucose synthase as an autoantigen that is recognized by cerebrospinal fluid–infiltrating CD4+ T cells from HLA-DRB3*–positive patients. Significant associations were found between reactivity to GDP-l-fucose synthase peptides and DRB3*02:02 expression, along with reactivity against an immunodominant myelin basic protein peptide. These results, coupled with the cross-recognition of homologous peptides from gut microbiota, suggest a possible role of this antigen as an inducer or driver of pathogenic autoimmune responses in multiple sclerosis.


Psychiatry ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 125-134
Author(s):  
E. F. Vasilyeva ◽  
O. S. Brusov

Background: at present, the important role of the monocyte-macrophage link of immunity in the pathogenesis of mental diseases has been determined. In the first and second parts of our review, the cellular and molecular mechanisms of activation of monocytes/macrophages, which secreting proinflammatory CD16 receptors, cytokines, chemokines and receptors to them, in the development of systemic immune inflammation in the pathogenesis of somatic diseases and mental disorders, including schizophrenia, bipolar affective disorder (BAD) and depression were analyzed. The association of high levels of proinflammatory activity of monocytes/macrophages in patients with mental disorders with somatic comorbidity, including immune system diseases, is shown. It is known that proinflammatory monocytes of peripheral blood, as a result of violation of the integrity of the hematoencephalic barrier can migrate to the central nervous system and activate the resident brain cells — microglia, causing its activation. Activation of microglia can lead to the development of neuroinammation and neurodegenerative processes in the brain and, as a result, to cognitive disorders. The aim of review: to analyze the results of the main scientific studies concerning the role of cellular and molecular mechanisms of peripheral blood monocytes interaction with microglial cells and platelets in the development of neuroinflammation in the pathogenesis of mental disorders, including Alzheimer’s disease (AD). Material and methods: keywords “mental disorders, AD, proinflammatory monocytes, microglia, neuroinflammation, cytokines, chemokines, cell adhesion molecules, platelets, microvesicles” were used to search for articles of domestic and foreign authors published over the past 30 years in the databases PubMed, eLibrary, Science Direct and EMBASE. Conclusion: this review analyzes the results of studies which show that monocytes/macrophages and microglia have similar gene expression profiles in schizophrenia, BAD, depression, and AD and also perform similar functions: phagocytosis and inflammatory responses. Monocytes recruited to the central nervous system stimulate the increased production of proinflammatory cytokines IL-1, IL-6, tumor necrosis factor alpha (TNF-α), chemokines, for example, MCP-1 (Monocyte chemotactic protein-1) by microglial cells. This promotes the recruitment of microglial cells to the sites of neuronal damage, and also enhances the formation of the brain protein beta-amyloid (Aβ). The results of modern studies are presented, indicating that platelets are involved in systemic inflammatory reactions, where they interact with monocytes to form monocyte-platelet aggregates (MTA), which induce the activation of monocytes with a pro inflammatory phenotype. In the last decade, it has been established that activated platelets and other cells of the immune system, including monocytes, detached microvesicles (MV) from the membrane. It has been shown that MV are involved as messengers in the transport of biologically active lipids, cytokines, complement, and other molecules that can cause exacerbation of systemic inflammatory reactions. The presented review allows us to expand our knowledge about the cellular and molecular aspects of the interaction of monocytes/macrophages with microglial cells and platelets in the development of neuroinflammation and cognitive decline in the pathogenesis of mental diseases and in AD, and also helps in the search for specific biomarkers of the clinical severity of mental disorder in patients and the prospects for their response to treatment.


2015 ◽  
Vol 287 ◽  
pp. 80-87 ◽  
Author(s):  
Beatrice Macchi ◽  
Francesca Marino-Merlo ◽  
Ugo Nocentini ◽  
Valerio Pisani ◽  
Salvatore Cuzzocrea ◽  
...  

2020 ◽  
Vol 9 (9) ◽  
pp. 3038 ◽  
Author(s):  
Remsha Afzal ◽  
Jennifer K Dowling ◽  
Claire E McCoy

Multiple Sclerosis (MS) is a chronic, autoimmune condition characterized by demyelinating lesions and axonal degradation. Even though the cause of MS is heterogeneous, it is known that peripheral immune invasion in the central nervous system (CNS) drives pathology at least in the most common form of MS, relapse-remitting MS (RRMS). The more progressive forms’ mechanisms of action remain more elusive yet an innate immune dysfunction combined with neurodegeneration are likely drivers. Recently, increasing studies have focused on the influence of metabolism in regulating immune cell function. In this regard, exercise has long been known to regulate metabolism, and has emerged as a promising therapy for management of autoimmune disorders. Hence, in this review, we inspect the role of key immunometabolic pathways specifically dysregulated in MS and highlight potential therapeutic benefits of exercise in modulating those pathways to harness an anti-inflammatory state. Finally, we touch upon current challenges and future directions for the field of exercise and immunometabolism in MS.


Sign in / Sign up

Export Citation Format

Share Document