scholarly journals Loss of FADD and Caspases Affects the Response of T-Cell Leukemia Jurkat Cells to Anti-Cancer Drugs

2021 ◽  
Vol 22 (5) ◽  
pp. 2702
Author(s):  
Zuzana Mrkvová ◽  
Michaela Portešová ◽  
Iva Slaninová

Programmed cell death (PCD) pathways play a crucial role in the response of cancer cells to treatment. Their dysregulation is one of the cancer hallmarks and one of the reasons of drug resistance. Here, we studied the significance of the individual members of PCD signaling pathways in response to treatment with common anti-cancer drugs using the T-cell leukemia Jurkat cells with single or double knockouts of necroptosis and/or apoptosis genes. We identified apoptosis as the primary cell death pathway upon anti-cancer drugs treatment. The cells with knocked out either Fas-associated protein with death domain (FADD) or all executioner caspases were resistant. This resistance could be partially overcome by induction of RIP1-dependent necroptosis through TNFR1 activation using combined treatment with TNF-α and smac mimetic (LCL161). RIP1 was essential for cellular response to TNF-α and smac mimetic, but dispensable for the response to anti-cancer drugs. Here, we demonstrated the significance of FADD and executioner caspases in carrying out programmed cell death upon anti-cancer drug treatments and the ability of combined treatment with TNF-α and smac mimetic to partially overcome drug resistance of FADD and/or CASP3/7/6-deficient cells via RIP1-dependent necroptosis. Thus, a combination of TNF-α and smac mimetic could be a suitable strategy for overcoming resistance to therapy in cells unable to trigger apoptosis.

2020 ◽  
Vol 20 (9) ◽  
pp. 779-787
Author(s):  
Kajal Ghosal ◽  
Christian Agatemor ◽  
Richard I. Han ◽  
Amy T. Ku ◽  
Sabu Thomas ◽  
...  

Chemotherapy employs anti-cancer drugs to stop the growth of cancerous cells, but one common obstacle to the success is the development of chemoresistance, which leads to failure of the previously effective anti-cancer drugs. Resistance arises from different mechanistic pathways, and in this critical review, we focus on the Fanconi Anemia (FA) pathway in chemoresistance. This pathway has yet to be intensively researched by mainstream cancer researchers. This review aims to inspire a new thrust toward the contribution of the FA pathway to drug resistance in cancer. We believe an indepth understanding of this pathway will open new frontiers to effectively treat drug-resistant cancer.


2021 ◽  
Vol 9 (1) ◽  
pp. 116-123
Author(s):  
Jindao Wu ◽  
Wenzhou Ding ◽  
Guoyong Han ◽  
Wei You ◽  
Wen Gao ◽  
...  

Nanomedicines generally suffer from poor accumulation in tumor cells, low anti-tumor efficacy, and drug resistance. In order to address these problems, we introduced a novel nanomedicine based on dual anti-cancer drugs, which showed good cell nuclear accumulation properties.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2177-2177
Author(s):  
Duncan H Mak ◽  
Christa Manton ◽  
Michael Andreeff ◽  
Bing Z Carter

Abstract Abstract 2177 The antiapoptotic function of the inhibitors of apoptosis family of proteins (IAPs) is antagonized by mitochondria-released SMAC protein. The IAP-member XIAP suppresses apoptosis by directly binding and inhibiting caspase-9 and caspase-3, while cIAP1, a component of the cytoplasmic signaling complex containing TNF receptor associated factors, suppresses apoptosis via the caspase-8-mediated pathway. BV-6 (Genentech) is a bivalent SMAC-mimetic and has been shown to promote cell death by inducing cIAP autoubiquitination, NF-κB activation, and TNFα-dependent apoptosis. We examined its effect on leukemic cells and found that BV-6 only moderately induced apoptosis. The EC50 was found to be 15.3±5.1 μM at 48 hours in OCI-AML3 cells which are relatively sensitive. We then determined whether BV-6 sensitizes leukemic cells to the HDM2-inhibitor nutlin-3a and to Ara-C. p53 modulates the expression and activity of Bcl-2 family proteins and promotes the mitochondrial-mediated apoptosis. We showed previously that activation of p53 by nutlin-3a sensitizes AML cells to XIAP inhibition induced-death in part by promoting the release of SMAC from mitochondrion (Carter BZ et al., Blood 2010). We treated OCI-AML3 cells with BV-6, nutlin-3a or Ara-C, and BV-6+nutlin-3a or BV-6+Ara-C and found that the combination of BV-6 and nutlin-3a or BV-6 and Ara-C synergistically induced cell death in OCI-AML3 cells with a combination index (CI) of 0.27±0.11 and 0.22±0.05 (48 hours), respectively. To demonstrate that p53 activation is essential for the synergism of BV-6+nutlin-3a combination, we treated OCI-AML3 vector control and p53 knockdown cells with these two agents and found that the combination synergistically promoted cell death in the vector control (CI=0.47±0.15) but not in the p53 knockdown cells, as expected, while BV6+Ara-C was synergistic in both vector control and p53 knockdown cells (CI=0.15±0.03 and 0.08±0.03, respectively, 48 hours). BV-6 induced activation of caspase-8, caspase-9, and caspase-3 and decreased XIAP levels, but did not cause rapid cIAP1 degradation, as reported by others. To assess the contribution of death receptor-mediated apoptosis in BV-6-induced cell death, we treated Jurkat and caspase-8 mutated Jurkat cells (JurkatI9.2) with BV-6 and found that BV-6 induced cell death and significantly potentiated TRAIL-induced apoptosis in Jurkat cells (CI=0.14±0.08, 48 hours). Caspase-8 mutated JurkatI9.2 cells were significantly less sensitive to BV-6 than Jurkat cells and as expected, JurkatI9.2 was completely resistant to TRAIL. Collectively, we showed that the bivalent SMAC-mimetic BV-6 potentiates p53 activation-, chemotherapy-, and TRAIL-induced cell death, but has only minimal activity by itself in leukemic cells. SMAC-mimetics could be useful in enhancing the efficacy of different classes of therapeutic agents used in AML therapy. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Jing Song ◽  
Arie Dagan

AbstractCeramide metabolism is a potential target for anti-cancer therapy. Studies show that chemotherapeutic agents can induce apoptosis and it is mediated by ceramide. Synthesized sphingolipid analogs can induce cell death in human lymphocytes and leukemia cells. By screening a group of synthetic sphingolipid analogs, we found that low concentrations of AD2750 and AD2646 induced cell death in human cancer cells by preventing ceramide from converting to sphingomyelin, individually or in combination with commercial cancer drugs. The combination of low concentrations of Taxol and AD2750 or AD2646 significantly increased cell death on human colon cancer cells (HT29). Co-administering low concentrations of Doxorubicin with AD2750 or AD2646 elevated cellular toxicity on human pancreatic cancer cells (CRL1687). This synergistic effect is related to the elevated cellular ceramide. Combining AD2750 or AD2646 with chemotherapy drugs can be used to manipulate ceramide and sphingomyelin metabolism, potentially to affect the growth of human cancer cells and increase the effectiveness of anti-cancer drugs on killing cancer cells.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2026 ◽  
Author(s):  
Tsukasa Nakanishi ◽  
Yuan Song ◽  
Cuiying He ◽  
Duo Wang ◽  
Kentaro Morita ◽  
...  

We previously reported that the inflammasome inhibitor cucurbitacin D (CuD) induces apoptosis in human leukemia cell lines. Here, we investigated the effects of CuD and a B-cell lymphoma extra-large (Bcl-xL) inhibitor on autophagy in peripheral blood lymphocytes (PBL) isolated from adult T-cell leukemia (ATL) patients. CuD induced PBL cell death in patients but not in healthy donors. This effect was not significantly inhibited by treatment with rapamycin or 3-methyladenine (3-MA). The Bcl-xL inhibitor Z36 induced death in primary cells from ATL patients including that induced by CuD treatment, effects that were partly inhibited by 3-MA. Similarly, cell death induced by the steroid prednisolone was enhanced in the presence of Z36. A western blot analysis revealed that Z36 also promoted CuD-induced poly(ADP ribose) polymerase cleavage. Interestingly, the effects of CuD and Z36 were attenuated in primary ATL patient cells obtained upon recurrence after umbilical cord blood transplantation, as compared to those obtained before chemotherapy. Furthermore, cells from this patient expressed a high level of caspase-1, and treatment with caspase-1 inhibitor-enhanced CuD-induced cell death. Taken together, these results suggest that rescue from resistance to steroid drugs can enhance chemotherapy, and that caspase-1 is a good marker for drug resistance in ATL patients.


2019 ◽  
Vol 14 (2) ◽  
pp. 113-132 ◽  
Author(s):  
Elmira Ekinci ◽  
Sagar Rohondia ◽  
Raheel Khan ◽  
Qingping P. Dou

Background:Despite years of success of most anti-cancer drugs, one of the major clinical problems is inherent and acquired resistance to these drugs. Overcoming the drug resistance or developing new drugs would offer promising strategies in cancer treatment. Disulfiram, a drug currently used in the treatment of chronic alcoholism, has been found to have anti-cancer activity.Objective:To summarize the anti-cancer effects of Disulfiram through a thorough patent review.Methods:This article reviews molecular mechanisms and recent patents of Disulfiram in cancer therapy.Results:Several anti-cancer mechanisms of Disulfiram have been proposed, including triggering oxidative stress by the generation of reactive oxygen species, inhibition of the superoxide dismutase activity, suppression of the ubiquitin-proteasome system, and activation of the mitogen-activated protein kinase pathway. In addition, Disulfiram can reverse the resistance to chemotherapeutic drugs by inhibiting the P-glycoprotein multidrug efflux pump and suppressing the activation of NF-kB, both of which play an important role in the development of drug resistance. Furthermore, Disulfiram has been found to reduce angiogenesis because of its metal chelating properties as well as its ability to inactivate Cu/Zn superoxide dismutase and matrix metalloproteinases. Disulfiram has also been shown to inhibit the proteasomes, DNA topoisomerases, DNA methyltransferase, glutathione S-transferase P1, and O6- methylguanine DNA methyltransferase, a DNA repair protein highly expressed in brain tumors. The patents described in this review demonstrate that Disulfiram is useful as an anti-cancer drug.Conclusion:For years the FDA-approved, well-tolerated, inexpensive, orally-administered drug Disulfiram was used in the treatment of chronic alcoholism, but it has recently demonstrated anti-cancer effects in a range of solid and hematological malignancies. Its combination with copper at clinically relevant concentrations might overcome the resistance of many anti-cancer drugs in vitro, in vivo, and in patients.


2017 ◽  
Vol 35 (4_suppl) ◽  
pp. 642-642 ◽  
Author(s):  
Jan Stenvang ◽  
Christine Hjorth Andreassen ◽  
Nils Brünner

642 Background: In metastatic colorectal cancer (mCRC) only 3 cytotoxic drugs (oxaliplatin, irinotecan and fluorouracil (5-FU)) are approved and the first and second line response rates are about 50% and 10-15%, respectively. Thus, new treatment options are needed. Novel anti-cancer drug candidates are primarily tested in an environment of drug resistance and the majority of novel drug candidates fail during clinical development. Therefore, “repurposing” of drugs has emerged as a promising strategy to apply established drugs in novel indications. The aim of this project was to screen established anti-cancer drugs to identify candidates for testing in mCRC patients relapsing on standard therapy. Methods: We applied 3 parental (drug sensitive) CRC cell lines (HCT116, HT29 and LoVo) and for each cell line also an oxaliplatin and irinotecan (SN38) resistant cell line. We obtained 129 FDA approved anti-cancer drugs from the Developmental Therapeutics Program (DTP) at the National Cancer Institute (NCI) ( https://dtp.cancer.gov/ ). The parental HT29 cell line and the drug resistant sublines HT29-SN38 and HT29-OXPT were exposed to 3 concentrations of each of the anti-cancer drugs. The effect on cell viability was analyzed by MTT assays. Nine of the drugs were analyzed for effect in the LoVo and HCT116 and the SN38- and oxaliplatin-resistant derived cell lines. Results: None of the drugs caused evident differential response between the resistant and sensitive cells or between the SN38 and oxaliplatin resistant cells. The screening confirmed the resistance as the cells displayed resistance to drugs in the same class as the one they were made resistant to. Of the drugs, 45 decreased cell viability in the HT29 parental and oxaliplatin- or SN-38 resistant cell lines. Nine drugs were tested in all nine CRC cell lines and eight decrease cell viability in the nine cell lines. These included drugs in different classes such as epigenetic drugs, antibiotics, mitotic inhibitors and targeted therapies. Conclusions: This study revealed several possible new “repurposing” drugs for CRC therapy, by showing that 45 FDA-approved anti-cancer drugs decrease cell viability in CRC cell lines with acquired drug resistance.


2016 ◽  
Vol 241 (18) ◽  
pp. 2015-2022 ◽  
Author(s):  
Mohamed El-Mesery ◽  
Mohamed E Shaker ◽  
Abdelaziz Elgaml

The inhibitors of apoptosis proteins are implicated in promoting cancer cells survival and resistance toward immune surveillance and chemotherapy. Second mitochondria-derived activator of caspases (SMAC) mimetics are novel compounds developed to mimic the inhibitory effect of the endogenous SMAC/DIABLO on these IAPs. Here, we examined the potential effects of the novel SMAC mimetic BV6 on different human cancer cell lines. Our results indicated that BV6 was able to induce cell death in different human cancer cell lines. Mechanistically, BV6 dose dependently induced degradation of IAPs, including cIAP1 and cIAP2. This was coincided with activating the non-canonical NF -kappa B (NF-κB) pathway, as indicated by stabilizing NF-κB-inducing kinase (NIK) for p100 processing to p52. More interestingly, BV6 was able to sensitize some of the resistant cancer cell lines to apoptosis induced by the death ligands tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) that are produced by different cells of the immune system. Such cell death enhancement was mediated by inducing an additional cleavage of caspase-9 to augment that of caspase-8 induced by death ligands. This eventually led to more processing of the executioner caspase-3 and poly (ADP-ribose) polymerase (PARP). In conclusion, therapeutic targeting of IAPs by BV6 might be an effective approach to enhance cancer regression induced by immune system. Our data also open up the future possibility of using BV6 in combination with other antitumor therapies to overcome cancer drug resistance.


Sign in / Sign up

Export Citation Format

Share Document