scholarly journals Diosmin Mitigates Cyclophosphamide Induced Premature Ovarian Insufficiency in Rat Model

2021 ◽  
Vol 22 (6) ◽  
pp. 3044
Author(s):  
Noha M. Abogresha ◽  
Sally S. Mohammed ◽  
Marwa M. Hosny ◽  
Hoda Y. Abdallah ◽  
Ahmed M. Gadallah ◽  
...  

The current study was designed to investigate the protective role of diosmin against cyclophosphamide-induced premature ovarian insufficiency (POI). Female Swiss albino rats received a single intraperitoneal dose of cyclophosphamide (200 mg/kg) followed by 8 mg/kg/day for the next 15 consecutive days either alone or in combination with oral diosmin at 50 or 100 mg/kg. Histopathological examination of ovarian tissues, hormonal assays for follicle stimulating hormone (FSH), estradiol (E2), and anti-Mullerian hormone (AMH), assessment of the oxidative stress status, as well as measurement of the relative expression of miRNA-145 and its target genes [vascular endothelial growth factor B (VEGF-B) and regulator of cell cycle (RGC32)] were performed. Diosmin treatment ameliorated the levels of E2, AMH, and oxidative stress markers. Additionally, both low and high diosmin doses significantly reduced the histopathological alterations and nearly preserved the normal ovarian reserve. MiRNA-145 expression was upregulated after treatment with diosmin high dose. miRNA-145 target genes were over-expressed after both low and high diosmin administration. Based on our findings, diosmin has a dose-dependent protective effect against cyclophosphamide-induced ovarian toxicity in rats.

2016 ◽  
Vol 50 (3) ◽  
Author(s):  
Gamila A. M. Kotb ◽  
Farag A.A. Gh ◽  
Kholoud S Ramadan ◽  
Hoda E.A. Farid

The garlic has been widely used as medicinal plant for its therapeutic properties This study was aimed to investigate the antioxidant role of garlic (G) against oxidative stress induced by malathion (M) in male albino rats. After experimental period (28 days), the study investigated some biochemical parameters and oxidative stress markers in plasma rats. The results revealed that, malathion induced significant increase in plasma Tri-iodothyronine (T<sub>3</sub>), Thyroxin (T<sub>4</sub>), glucose values and malondialdehyde (MDA) as oxidative stress marker was noticed. However, significant decrease was recorded in cholesterol, total protein (T. Protein) contents and in defense system biomarker total SH- protein. Acetylcholinesterase (AChE) activity was inhibited by malathion treatment and cause alteration in non-specific esterase and protein pattern. Finally, these results concluded that garlic has significant protection against malathion intoxication demonstrated inhibition in acetyl cholinesterase (AChE) activity and reduced in cholesterol, T. protein and total SH- protein. Further studies are necessary to investigate the significant effect of garlic on thyroid gland, brain and neurotransmitters.


2021 ◽  
Vol 14 (1) ◽  
pp. 31-37
Author(s):  
N.S. Sadi ◽  
S.M. Abubakar ◽  
A. Ibrahim ◽  
A.M. Umar ◽  
A.M. Gadanya ◽  
...  

Tamarind tree is a multipurpose tree of which almost every part finds at least some use, either nutritional or medicinal. Due to its pleasant acidic taste and rich aroma, the pulp is widely used for domestic and industrial purpose. A study was carried out to evaluate the effect of Tamarind juice intake in CCl4 induced oxidative stress albino rats. The Proximate, antinutrient, and Phytochemical contents of tamarind juice were analyzed using standard AOAC methods while mineral contents were determined using atomic absorption spectrometry. Oxidative stress markers were also analyzed using colorimetric assay kit. The serum levels of oxidative stress markers were compared between the normal and test groups. Experimental rats were divided into five groups: Normal control group, negative control (CCl4) group, standard drug (Vitamin C) group, tamarind low and high dose group. At the end of the experiment, significant increase in malondialdehyde level and decrease in superoxide dismutase, catalase, reduced glutathione and glutathione Peroxidase activities were recorded in CCl4-exposed rats as compared to normal control group. In the tamarind supplemented groups, the level of MDA along with the activities of SOD, CAT, GSH and GPx were comparable with the normal control rats (p>0.05). Thus, it appears that tamarind juice ameliorate the effect of CCl4; suggesting that consumption of natural compounds with an antioxidant profile may be a preventive alternative to those diseases associated with oxidative stress.


2016 ◽  
Vol 94 (2) ◽  
pp. 131-139 ◽  
Author(s):  
Khaled A. Alhumaidha ◽  
Dalia O. Saleh ◽  
Mai A. Abd El Fattah ◽  
Wafaa I. El-Eraky ◽  
Helmy Moawad

Cyclophosphamide (CP) is a cytotoxic alkylating agent used in the treatment of malignant diseases and autoimmune disorders. Its clinical use is limited to its marked cardiorenal toxicity. The present study aimed to investigate the possible protective role of taurine (Tau; 200 mg·kg−1per day, i.p.) on CP-induced cardiorenal toxicity. CP (200 mg·kg−1) was administered as a single intraperitoneal injection whereas; Tau was administered for 3 weeks on a daily basis. The results showed that CP produced an elevation in serum activities of creatine kinase, creatine kinase isoenzyme, lactate dehydrogenase, creatinine as well as blood urea nitrogen. CP also induced an elevation in the oxidative stress markers viz. elevation in the serum lipid peroxides level (measured as malondialdehyde; MDA) and reduction in reduced glutathione level and superoxide dismutase activity in both heart and renal tissue. On the other hand, administration of Tau attenuated the CP-evoked disturbances in the above mentioned parameters. In addition, CP exhibited electrocardiographic (ECG) changes, which were significantly reversed by Tau treatment. Finally, the histopathological examination emphasized the obtained results. In conclusion, Tau is suggested to be a potential candidate to ameliorate CP-induced cardiorenal toxicity that may be related to its antioxidant activity.


Author(s):  
SURENDRA BABU THANGACHI ◽  
VARSHA SRIRAM MOKHASI ◽  
AGA AMMAR MURTHUZA

Objective: The study was intended to explore whether Monosodium glutamate (MSG) induces oxidative stress on the liver of Wistar albino rats when fed chronically at three different doses, namely, low, mid, and high doses identical to human consumption doses in growing countries. Methods: The acclimatized Wistar albino rats (n=24) were randomly selected and grouped into four groups, namely Control, Low dose MSG (180 mg kg), Mid dose MSG (360 mg/kg), and High dose MSG (720 mg/kg). The animals were orally administered MSG for 120 days. After completion of the experimental period (120 days), euthanized animal liver was homogenized to investigate the oxidative stress marker enzymes such as Superoxide Dismutase (SOD), Glutathione Peroxidase (GPx), Catalase (CAT), and Myeloperoxidase (MPO). Results: The MPO showed a significant increase (p<0.05) in liver homogenate of all MSG induced groups when compared to control group. The SOD, CAT, and GPx activity deteriorated (p<0.05) in monosodium induced groups contrasting to the control group. Conclusion: The effects of MSG on oxidative stress markers on liver homogenate in the current study exhibited erratic abnormal changes in oxidative stress markers of monosodium induced groups which contemplate the harmful effects of MSG consumed chronically. The further studies should confirm the genetic basis of oxidative stress damage and transform the safety regulations of MSG consumption throughout the world.


2020 ◽  
Vol 10 (5) ◽  
pp. 578-586
Author(s):  
Areeg M. Abdelrazek ◽  
Shimaa A. Haredy

Background: Busulfan (Bu) is an anticancer drug with a variety of adverse effects for cancer patients. Oxidative stress has been considered as a common pathological mechanism and it has a key role in the initiation and progression of liver injury by Bu. Aim: The study aimed to evaluate the antioxidant impact of L-Carnitine and Coenzyme Q10 and their protective role against oxidative stress damage in liver tissues. Methods and Material: Thirty-six albino rats were divided equally into six groups. G1 (con), received I.P. injection of DMSO plus 1 ml of distilled water daily by oral gavages; G2 (Bu), received I.P. injection of Bu plus 1 ml of the distilled water daily; G3 (L-Car), received 1 ml of L-Car orally; G4 (Bu + L-Car) received I.P. injection of Bu plus 1 ml of L-Car, G5 (CoQ10) 1 ml of CoQ10 daily; and G6 (Bu + CoQ10) received I.P. injection of Bu plus 1 ml of CoQ10 daily. Results: The recent data showed that Bu induced significant (P<0.05) elevation in serum ALT, AST, liver GSSG, NO, MDA and 8-OHDG, while showing significant (P<0.05) decrease in liver GSH and ATP. On the other hand, L-Carnitine and Coenzyme Q10 ameliorated the negative effects prompted by Bu. Immunohistochemical expression of caspase-3 in liver tissues reported pathological alterations in Bu group while also showed significant recovery in L-Car more than CoQ10. Conclusion: L-Car, as well as CoQ10, can enhance the hepatotoxic effects of Bu by promoting energy production in oxidative phosphorylation process and by scavenging the free radicals.


2011 ◽  
Vol 31 (6) ◽  
pp. 565-573 ◽  
Author(s):  
M Tutanc ◽  
V Arica ◽  
N Yılmaz ◽  
A Nacar ◽  
I Zararsiz ◽  
...  

Aim: In cyclosporin-A (CsA)-induced toxicity, oxidative stress has been implicated as a potential responsible mechanism. Therefore, we aimed to investigate the protective role of erdosteine against CsA-induced nephrotoxicity in terms of tissue oxidant/antioxidant parameters and light microscopy in rats. Materials and methods: Wistar albino rats were randomly separated into four groups. Group 1 rats treated with sodium chloride served as the control, group 2 rats were treated with CsA, group 3 with CsA plus erdosteine, and group 4 with erdosteine alone. Animals were killed and blood samples were analyzed for blood urea nitrogen (BUN), serum creatinine (Cr), uric acid (UA), total protein (TP), and albumin (ALB) levels. Kidney sections were analyzed for malondialdehyde (MDA) and nitric oxide (NO) levels and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, as well as for histopathological changes. Results: In the CsA group, MDA, GSH-Px, BUN, and Cr levels were increased. The TP and ALB levels were decreased. These changes had been improved by erdosteine administration. Other biochemical parameters did not show any significant change. Conclusion: These results indicate that erdosteine produces a protective mechanism against CsA-induced nephrotoxicity and suggest a role of oxidative stress in pathogenesis.


2021 ◽  
Author(s):  
Chitra Jairaman ◽  
Sabine Matou-Nasri ◽  
Zeyad I Alehaideb ◽  
Syed Ali Mohamed Yacoob ◽  
Anuradha Venkataraman ◽  
...  

Abstract The bark extract of Rhizophora mucronata (BERM) was recently reported for its prominent in vitro protective effects against liver cell line toxicity caused by various toxicants, including ethanol. Here, we aimed to verify the in vivo hepatoprotective effects of BERM against ethanol intoxication. An oral administration of different concentrations (100, 200, and 400 mg/kg) of BERM prior to high-dose ethanol via intraperitoneal injection was performed in mice. On the 7th day, liver and kidney sections were dissected out for histopathological examination. The ethanol intoxication caused large areas of liver necrosis while the kidneys were not affected. Pre-BERM administration decreased ethanol-induced liver injury, as compared to the mice treated with ethanol alone. In addition, the pre-BERM administration resulted in a decrement in the level of ethanol-induced oxidative stress, revealed by a concomitant increase of GSH and a decrease of MDA hepatic levels. The BERM extract also reversed the ethanol-induced liver injury and hepatotoxicity, characterized by the low detection of TNF-α gene expression level and fragmented DNA, respectively. Altogether, BERM extract exerts antioxidative activities and present promising hepatoprotective effects against ethanol intoxication. The identification of the related bioactive compounds will be of interest for future use at physiological concentrations in ethanol-intoxicated individuals.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Olufunke Olorundare ◽  
Adejuwon Adeneye ◽  
Akinyele Akinsola ◽  
Sunday Soyemi ◽  
Alban Mgbehoma ◽  
...  

Trastuzumab (TZM) is a humanized monoclonal antibody that has been approved for the clinical management of HER2-positive metastatic breast and gastric cancers but its use is limited by its cumulative dose and off-target cardiotoxicity. Unfortunately, till date, there is no approved antidote to this off-target toxicity. Therefore, an acute study was designed at investigating the protective potential and mechanism(s) of CVE and IGE in TZM-induced cardiotoxicity utilizing cardiac enzyme and oxidative stress markers and histopathological endpoints. 400 mg/kg/day CVE and IGE dissolved in 5% DMSO in sterile water were investigated in Wistar rats injected with 2.25 mg/kg/day/i.p. route of TZM for 7 days, using serum cTnI and LDH, complete lipid profile, cardiac tissue oxidative stress markers assays, and histopathological examination of TZM-intoxicated heart tissue. Results showed that 400 mg/kg/day CVE and IGE profoundly attenuated increases in the serum cTnI and LDH levels but caused no significant alterations in the serum lipids and weight gain pattern in the treated rats. CVE and IGE profoundly attenuated alterations in the cardiac tissue oxidative stress markers’ activities while improving TZM-associated cardiac histological lesions. These results suggest that CVE and IGE could be mediating its cardioprotection via antioxidant, free radical scavenging, and antithrombotic mechanisms, thus, highlighting the therapeutic potentials of CVE and IGE in the management of TZM-mediated cardiotoxicity.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hazal Tuzcu ◽  
Ibrahim Aslan ◽  
Mutay Aslan

Effect of high-dose insulin analog initiation therapy was evaluated on lipid peroxidation and oxidative stress markers in type 2 diabetes mellitus (T2DM). Twenty-four T2DM patients with HbA1c levels above 10% despite ongoing therapy with sulphonylurea and metformin were selected. Former treatment regimen was continued for the first day followed by substitution of sulphonylurea therapy with different insulin analogs. Glycemic profiles were determined over 72 hours by Continuous Glucose Monitoring System (CGMS), and blood/urine samples were collected at 24 and 72 hours. Insulin analog plus metformin treatment significantly reduced glucose variability. Plasma and urine lipid peroxidation were markedly decreased following insulin analog plus metformin treatment. No correlation existed between glucose variability and levels of plasma and urine oxidative stress markers. Likewise, changes in mean blood glucose from baseline to end point showed no significant correlation with changes in markers of oxidative stress. On the contrary, decreased levels of oxidative stress markers following treatment with insulin analogs were significantly correlated with mean blood glucose levels. In conclusion, insulin plus metformin resulted in a significant reduction in oxidative stress markers compared with oral hypoglycemic agents alone. Data from this study suggests that insulin analogs irrespective of changes in blood glucose exert inhibitory effects on free radical formation.


Sign in / Sign up

Export Citation Format

Share Document