scholarly journals Intra-Articular Administration of Cramp into Mouse Knee Joint Exacerbates Experimental Osteoarthritis Progression

2021 ◽  
Vol 22 (7) ◽  
pp. 3429
Author(s):  
Moon-Chang Choi ◽  
Jiwon Jo ◽  
Myeongjin Lee ◽  
Jonggwan Park ◽  
Yoonkyung Park

Osteoarthritis (OA) is the most common type of arthritis and is associated with wear and tear, aging, and inflammation. Previous studies revealed that several antimicrobial peptides are up-regulated in the knee synovium of patients with OA or rheumatoid arthritis. Here, we investigated the functional effects of cathelicidin-related antimicrobial peptide (Cramp) on OA pathogenesis. We found that Cramp is highly induced by IL-1β via the NF-κB signaling pathway in mouse primary chondrocytes. Elevated Cramp was also detected in the cartilage and synovium of mice suffering from OA cartilage destruction. The treatment of chondrocytes with Cramp stimulated the expression of catabolic factors, and the knockdown of Cramp by small interfering RNA reduced chondrocyte catabolism mediated by IL-1β. Moreover, intra-articular injection of Cramp into mouse knee joints at a low dose accelerated traumatic OA progression. At high doses, Cramp affected meniscal ossification and tears, leading to cartilage degeneration. These findings demonstrate that Cramp is associated with OA pathophysiology.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 126.3-126
Author(s):  
Y. Cho ◽  
D. Kang ◽  
J. H. Kim

Background:A progressive loss of cartilage matrix leads to the development of osteoarthritis (OA). Matrix homeostasis is disturbed in OA cartilage as the result of reduced production of cartilage-specific matrix and increased secretion of catabolic mediators by chondrocytes. Chondrocyte senescence is a crucial cellular event contributing to such imbalance in matrix metabolism during OA development.Objectives:We sought to identify a previously unknown, senescence-associated signaling pathway in chondrocytes linked to major OA cartilage manifestations such as PG loss and cartilage degeneration.Methods:We particularly aimed to screen miRNAs whose inhibition could effectively modulate senescent phenotypes of chondrocytes to treat OA. We investigated the regulatory mechanisms of miR-204 under various stress-eliciting stimuli in primary cultured human and mouse chondrocytes. We examined the in vivo effects of miR-204 overexpression and its antagonism in surgically induced OA mouse models. DMM surgery was used to induce posttraumatic OA in 12-week-old mice. Small RNAs were delivered to mouse knee joints by intra-articular injection. Various OA manifestations including cartilage destruction, subchondral bone sclerosis, osteophyte maturity, and synovial inflammation in mice were histologically inspected.Results:We identify miR-204 as a senescence-associated microRNA (miRNA) which is markedly upregulated in OA cartilage. The upregulated miR-204 simultaneously targets multiple components of the sulfated proteoglycan (PG) biosynthesis pathway, effectively shutting down PG anabolism. Ectopic expression of the miR-204 in joints triggers spontaneous cartilage loss and OA development, whereas inhibition of miR-204 ameliorates experimental OA, with concomitant recovery of PG synthesis and suppression of inflammatory senescence-associated secretory phenotype (SASP) factors in cartilageConclusion:we unravel a stress-activated senescence pathway that underlies disrupted matrix homeostasis in OA cartilage.References:[1]O. H. Jeon, C. Kim, R.-M. Laberge, M. Demaria, S. Rathod, A. P. Vasserot, J. W. Chung, D. H. Kim, Y. Poon, N. David, D. J. Baker, J. M. van Deursen, J. Campisi, J. H. Elisseeff, Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017)Disclosure of Interests:None declared


2020 ◽  
Vol 82 (6) ◽  
pp. 64-73
Author(s):  
O.H. Korotkyi ◽  
◽  
T.V. Luhovska ◽  
T.M. Serhiychuk ◽  
K.O. Dvorshchenko ◽  
...  

Osteoarthritis is a most widespread chronic degenerative joint disease that causes pain, cartilage deformation, and joint inflammation. Adverse alterations of intestinal microbiota like dysbiosis may lead to metabolic syndrome and inflammation, two important components of osteoarthritis progression. Aim. In this study we investigated the effect of chondroitin sulfate and probiotics on the gut microbiome in monoiodoacetate-induced osteoarthritis model in rats. Methods. The species and quantitative composition of feces were determined using diagnostic media with selective properties. Further identification of isolated microorganisms was carried out according to morphological, tinctorial, physiological and metabolic parameters. The results are presented in the form of lg CFU/g. Results. Induction of osteoarthritis caused significant increasing the number of opportunistic enterobacteria and lactose-negative Escherichia coli against the decreasing of lacto- and bifidobacteria that may indicate a dysbiotic condition. Coadministration of chondroitin sulfate and probiotic bacteria has led to improvement the quantitative composition of the gut microbiota in experimental animals, the numerous of Bifidobacterium, Lactobacillus were increasing against decreasing the quantitative composition of opportunistic microorganisms. Conclusions. Monoiodoacetate-induced osteoarthritis caused dysbiosis of gut in rat. We observed beneficial effect of combined administration of chondroitin sulfate and probiotics on gut microbiota composition in rats with experimental osteoarthritis. Thus, adding of supplements like probiotics to standard treatment of osteoarthritis may have potentials to prevent and treat this disease.


2021 ◽  
Vol 7 (15) ◽  
pp. eabe6374
Author(s):  
Yulong Wei ◽  
Lesan Yan ◽  
Lijun Luo ◽  
Tao Gui ◽  
Biang Jang ◽  
...  

Treating osteoarthritis (OA) remains a major clinical challenge. Despite recent advances in drug discovery and development, no disease-modifying drug for knee OA has emerged with any notable clinical success, in part, due to the lack of valid and responsive therapeutic targets and poor drug delivery within knee joints. In this work, we show that the amount of secretory phospholipase A2 (sPLA2) enzyme increases in the articular cartilage in human and mouse OA cartilage tissues. We hypothesize that the inhibition of sPLA2 activity may be an effective treatment strategy for OA. To develop an sPLA2-responsive and nanoparticle (NP)–based interventional platform for OA management, we incorporated an sPLA2 inhibitor (sPLA2i) into the phospholipid membrane of micelles. The engineered sPLA2i-loaded micellar NPs (sPLA2i-NPs) were able to penetrate deep into the cartilage matrix, prolong retention in the joint space, and mitigate OA progression. These findings suggest that sPLA2i-NPs can be promising therapeutic agents for OA treatment.


2017 ◽  
Vol 7 (1) ◽  
pp. 171
Author(s):  
Hamid Reza Adeli Bhroz ◽  
Kazem Parivar ◽  
Iraj Amiri ◽  
Nasim Hayati Roodbari

Background and Aim: Thyroid is one of the endocrine glands, (T3 and T4) play a significant role in the development of prenatal brain and the following stages. The study aimed to evaluate the effect of hypothyroidism on the amount of expression of NT4, NT3, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in brain of one-day rat neonates with hypothyroidism.Materials and Methods: In total, 25 mature mice of Albino NMRI race were selected after mating, divided into three group, control, as well as low-dose and high-dose intervention groups. Samples of the control group received pure water during pregnancy, whereas subjects of the intervention group with low and high doses of the medication were administered with 20 mg and 100 mg methimazole powder (dissolved in 100 cc water), respectively. After child delivery, blood samples were obtained from mother mice to determine the level of T3 and T4 in blood serum. Following that, the brain of one-day mice were removed by surgery and assessed to determine the amount of expression of NT4, NT3, NGF and BDNF using the complete kit of RT-PCR.Results: Levels of T4 and T3 in the control group were 28 ug/dl and 1.59 ug/dl, respectively. In the low-dose intervention group, the amounts of the mentioned hormones were 8 ug/dl and 0.85 ug/dl, significantly, indicating a significant reduction in the expression of NT4, NT3, NGF and BDNF genes, compared to the control group. Moreover, T4 and T3 were 6 ug/dl and 0.79 ug/dl in the high-dose group, respectively, conveying a significant decrease in the expression of NT4, NT3, NGF and BDNF genes, compared to the control group (P<0.05).


2003 ◽  
Vol 77 (24) ◽  
pp. 13323-13334 ◽  
Author(s):  
Yang Wang ◽  
Mario Lobigs ◽  
Eva Lee ◽  
Arno Müllbacher

ABSTRACT C57BL/6J mice infected intravenously with the Sarafend strain of West Nile virus (WNV) develop a characteristic central nervous system (CNS) disease, including an acute inflammatory reaction. Dose response studies indicate two distinct kinetics of mortality. At high doses of infection (108 PFU), direct infection of the brain occurred within 24 h, resulting in 100% mortality with a 6-day mean survival time (MST), and there was minimal destruction of neural tissue. A low dose (103 PFU) of infection resulted in 27% mortality (MST, 11 days), and virus could be detected in the CNS 7 days postinfection (p.i.). Virus was present in the hypogastric lymph nodes and spleens at days 4 to 7 p.i. Histology of the brains revealed neuronal degeneration and inflammation within leptomeninges and brain parenchyma. Inflammatory cell infiltration was detectable in brains from day 4 p.i. onward in the high-dose group and from day 7 p.i. in the low-dose group, with the severity of infiltration increasing over time. The cellular infiltrates in brain consisted predominantly of CD8+, but not CD4+, T cells. CD8+ T cells in the brain and the spleen expressed the activation markers CD69 early and expressed CD25 at later time points. CD8+ T-cell-deficient mice infected with 103 PFU of WNV showed increased mortalities but prolonged MST and early infection of the CNS compared to wild-type mice. Using high doses of virus in CD8-deficient mice leads to increased survival. These results provide evidence that CD8+ T cells are involved in both recovery and immunopathology in WNV infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenbin Pei ◽  
Xiaojian Huang ◽  
Bowei Ni ◽  
Rui Zhang ◽  
Guangyi Niu ◽  
...  

Osteoarthritis (OA), which is identified by chronic pain, impacts the quality of life. Cartilage degradation and inflammation are the most relevant aspects involved in its development. Signal transducer and activator of transcription 3(STAT3), a member of the STATs protein family, is associated with inflammation. Alantolactone (ALT), a sesquiterpene lactone compound, can selectively suppress the phosphorylation of STAT3. However, the pharmacological effect of ALT on OA is still imprecise. In this study, IL-1β (10 ng/ml) was applied to cartilage chondrocytes, which were treated with different concentrations of Alantolactone for 24 h. The expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2(COX2), matrix metalloproteinases (MMPs) and thrombospondin motifs-5 (ADAMTS5) were detected by western blot. Protein expression of Collagen Ⅱ was observed by western blot, safranin O staining and immunofluorescence. Manifestation of autophagy related proteins such as autophagy-related gene-5 (ATG5), P62, LC3Ⅱ/Ⅰ and PI3K/AKT/mTOR-related signaling molecules were measured by western blot and autophagic flux monitored by confocal microscopy. Expression of STAT3 and NF-κB-related signaling molecules were evaluated by western blot and immunofluorescence. In vivo, 2 mg/kg ALT or equal bulk of vehicle was engaged in the destabilization of medial meniscus (DMM) mouse models by intra-articular injection, the degree of cartilage destruction was classified by Safranin O/Fast green staining. Our findings reported that the enhance of inflammatory factors containing iNOS, COX2, MMPs and ADAMTS5 induced by IL-1β could be ameliorated by ALT. Additionally, the diminish of Collagen Ⅱ and autophagy which was stimulated by IL-1β could be alleviated by ALT. Mechanistically, STAT3, NF-κB and PI3K/AKT/mTOR signal pathways might be involved in the effect of ALT on IL-1β-induced mouse chondrocytes. In vivo, ALT protected cartilage in the DMM mouse model. Overall, this study illustrated that ALT attenuated IL-1β-induced inflammatory responses, relieved cartilage degeneration and promoted impaired autophagy via restraining of STAT3 and NF-κB signal pathways, implying its auspicious therapeutical effect for OA.


Aging ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 1087-1103 ◽  
Author(s):  
Xiaofeng Feng ◽  
Jianying Pan ◽  
Junyan Li ◽  
Chun Zeng ◽  
Weizhong Qi ◽  
...  

Author(s):  
Nirmal Chandra Sukul ◽  
Tandra Sarkar ◽  
Atheni Konar ◽  
Anirban Sukul

Background: High dilutions of drugs, used in homeopathy, are usually applied by oral route or foliar spray. These dilutions first come in contact with membrane or circulating proteins. Ultra low doses of mercuric chloride, called potencies, promote activity of diastase or ?-amylase in terms of breakdown of starch, a polysaccharide into a disaccharide maltose in a cell-free medium in test tubes. Merc cor or HgCl2 in high doses inhibits the enzyme activity. Aims: To see (i) whether the high and ultra low dose effects of HgCl2 involve different binding sites of the enzyme and (ii) to find an explanation for the low dose effect of HgCl2 in spite of absence of its original molecules. Methodology: Merc cor mother tincture (147 mM HgCl2) in distilled water was used undiluted in this experiment. Merc cor 200c and 1000c were prepared from the mother tincture (MT) by successive dilution with water 1:100 followed by succussion in 200 and 1000 steps, respectively, and finally preserved in 90% EtOH. These potencies and blank 90% ethanol, were diluted with deionized, distilled (DD) water 1:1000 to minimize ethanol content in test solutions. Each test solution or control was mixed with the enzyme 1:10 just before experiment. The control consisted of DD water. An isothermal calorimetry (ITC) instrument was used to measure the interaction between soluble starch and ?-amylase mixed with each potency (200c/1000c) of Merc cor, its mother tincture, ethanol and control. ITC is a thermodynamic technique which helps in measuring directly very small amount of heat evolved during chemical reaction. Soluble starch 90 µM was injected into 300 µl of 15µM ?-amylase at 2 µl / injection. Twenty injections, one every 2 min, were given. The enzyme substrate interaction in terms of heat released (exothermic) or absorbed (endothermic) were monitored by the ITC instrument. All ITC measurements were calculated and analyzed statistically by an in-built software Origin 7. Results and discussion: The data are presented in figures. While Merc cor MT shows endothermic reaction, all its potencies, ethanol and water control show exothermic reactions. There is wide variation in enthalpy (?H), entropy (?S), binding constant (K) and Gibbs free energy change (?G) among the treatments with Merc cor MT, potencies, ethanol and also control. The results indicate that Merc cor MT and its potencies act on different binding sites of the enzyme. The variation in thermodynamic parameters suggest difference in binding interaction between the drug solutions and the enzyme. This in turn influences the enzyme substrate interaction as reported in earlier studies. The potencies are virtually water modified by the starting substance HgCl2. Conclusion: The mother tincture and potencies of mercuric chloride produce different effects on the enzyme substrate interaction. Potencies show wide variation in ?H, ?S, K and ?G values. It appears from the results that the drugs used in homeopathy produce dual action on proteins. At high doses they act on a binding site(s) but at ultra low doses they act on a different binding site(s). Proteins in an organism may serve as targets for initiation of action of homeopathic potencies.


2021 ◽  
Author(s):  
keren nitzan ◽  
Leah Ellenbogen ◽  
Tal Beniamin ◽  
Yosef Sarne ◽  
Ravid Doron

Alzheimer's disease (AD) is the most common form of dementia. AD has a physical, emotional, and economic impact on the patients and their families and society at large. More than a decade since its discovery, there is still no available treatment. Delta-9-Tetrahydrocannabinol (THC) is emerging as a promising therapeutic agent. Using THC in conventional-high doses may have deleterious effects. Therefore, we propose to use an ultra-low dose of THC (ULD-THC). We previously published that a single injection of ULD-THC elevated Sirtuin-1 (Sirt-1) levels in the brain and ameliorated cognitive functioning in several models of brain injuries as well as in naturally aging mice. Our working hypothesis suggests that ULD-THC can prevent and even reverse AD pathology. In this preliminary study, we saw that a single injection of ULD-THC alleviated cognitive impairments in a mice model of AD, 5xFAD mice. Our work may establish the foundations for the development of a pharmaceutical preparation for the treatment of AD patients, thus, bringing the ULD-THC treatment closer to clinical application.


2009 ◽  
Vol 77 (12) ◽  
pp. 5612-5622 ◽  
Author(s):  
T. Eoin West ◽  
Thomas R. Hawn ◽  
Shawn J. Skerrett

ABSTRACT Melioidosis is a tropical disease endemic in southeast Asia and northern Australia caused by the gram-negative soil saprophyte Burkholderia pseudomallei. Although infection is often systemic, the lung is frequently involved. B. thailandensis is a closely related organism that at high doses causes lethal pneumonia in mice. We examined the role of Toll-like receptors (TLRs), essential components of innate immunity, in vitro and in vivo during murine B. thailandensis pneumonia. TLR2, TLR4, and TLR5 mediate NF-κB activation by B. thailandensis in transfected HEK293 or CHO cells. In macrophages, TLR4 and the adaptor molecule MyD88, but not TLR2 or TLR5, are required for tumor necrosis factor alpha production induced by B. thailandensis. In low-dose airborne infection, TLR4 is needed for early, but not late, bacterial containment, and MyD88 is essential for control of infection and host survival. TLR2 and TLR5 are not necessary to contain low-dose infection. In high-dose airborne infection, TLR2 deficiency confers a slight survival advantage. Lung and systemic inflammatory responses are induced by low-dose inhaled B. thailandensis independently of individual TLRs or MyD88. These findings suggest that redundancy in TLR signaling or other MyD88-dependent pathways may be important in pneumonic B. thailandensis infection but that MyD88-independent mechanisms of inflammation are also activated. TLR signaling in B. thailandensis infection is substantially comparable to signaling induced by virulent B. pseudomallei. These studies provide additional insights into the host-pathogen interaction in pneumonic Burkholderia infection.


Sign in / Sign up

Export Citation Format

Share Document