scholarly journals Proliferative Capacity of Adult Mouse Brain

2021 ◽  
Vol 22 (7) ◽  
pp. 3449
Author(s):  
Mikhail Semenov

We studied cell proliferation in the postnatal mouse brain between the ages of 2 and 30 months and identified four compartments with different densities of proliferating cells. The first identified compartment corresponds to the postnatal pallial neurogenic (PPN) zone in the telencephalon; the second to the subpallial postnatal neurogenic (SPPN) zone in the telencephalon; the third to the white matter bundles in the telencephalon; and the fourth to all brain parts outside of the other three compartments. We estimated that about 3.4 million new cells, including 0.8 million in the subgranular zone (SGZ) in the hippocampus, are produced in the PPN zone. About 21 million new cells, including 10 million in the subependymal zone (SEZ) in the lateral walls of the lateral ventricle and 2.7 million in the rostral migratory stream (RMS), are produced in the SPPN zone. The third and fourth compartments together produced about 31 million new cells. The analysis of cell proliferation in neurogenic zones shows that postnatal neurogenesis is the direct continuation of developmental neurogenesis in the telencephalon and that adult neurogenesis has characteristics of the late developmental process. As a developmental process, adult neurogenesis supports only compensatory regeneration, which is very inefficient.

2021 ◽  
Vol 22 (14) ◽  
pp. 7664
Author(s):  
Katarzyna Bartkowska ◽  
Krzysztof Turlejski ◽  
Beata Tepper ◽  
Leszek Rychlik ◽  
Peter Vogel ◽  
...  

Shrews are small animals found in many different habitats. Like other mammals, adult neurogenesis occurs in the subventricular zone of the lateral ventricle (SVZ) and the dentate gyrus (DG) of the hippocampal formation. We asked whether the number of new generated cells in shrews depends on their brain size. We examined Crocidura russula and Neomys fodiens, weighing 10–22 g, and Crocidura olivieri and Suncus murinus that weigh three times more. We found that the density of proliferated cells in the SVZ was approximately at the same level in all species. These cells migrated from the SVZ through the rostral migratory stream to the olfactory bulb (OB). In this pathway, a low level of neurogenesis occurred in C. olivieri compared to three other species of shrews. In the DG, the rate of adult neurogenesis was regulated differently. Specifically, the lowest density of newly generated neurons was observed in C. russula, which had a substantial number of new neurons in the OB compared with C. olivieri. We suggest that the number of newly generated neurons in an adult shrew’s brain is independent of the brain size, and molecular mechanisms of neurogenesis appeared to be different in two neurogenic structures.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1376
Author(s):  
Concettina Cappadone ◽  
Emil Malucelli ◽  
Maddalena Zini ◽  
Giovanna Farruggia ◽  
Giovanna Picone ◽  
...  

Magnesium is an essential nutrient involved in many important processes in living organisms, including protein synthesis, cellular energy production and storage, cell growth and nucleic acid synthesis. In this study, we analysed the effect of magnesium deficiency on the proliferation of SaOS-2 osteosarcoma cells. When quiescent magnesium-starved cells were induced to proliferate by serum addition, the magnesium content was 2–3 times lower in cells maintained in a medium without magnesium compared with cells growing in the presence of the ion. Magnesium depletion inhibited cell cycle progression and caused the inhibition of cell proliferation, which was associated with mTOR hypophosphorylation at Serine 2448. In order to map the intracellular magnesium distribution, an analytical approach using synchrotron-based X-ray techniques was applied. When cell growth was stimulated, magnesium was mainly localized near the plasma membrane in cells maintained in a medium without magnesium. In non-proliferating cells growing in the presence of the ion, high concentration areas inside the cell were observed. These results support the role of magnesium in the control of cell proliferation, suggesting that mTOR may represent an important target for the antiproliferative effect of magnesium. Selective control of magnesium availability could be a useful strategy for inhibiting osteosarcoma cell growth.


2006 ◽  
Vol 31 (4) ◽  
pp. 713-722 ◽  
Author(s):  
Jerome Ricard ◽  
Jessica Salinas ◽  
Lissette Garcia ◽  
Daniel J. Liebl

1996 ◽  
Vol 16 (7) ◽  
pp. 3765-3772 ◽  
Author(s):  
D Broccoli ◽  
L A Godley ◽  
L A Donehower ◽  
H E Varmus ◽  
T de Lange

Activation of telomerase in human cancers is thought to be necessary to overcome the progressive loss of telomeric DNA that accompanies proliferation of normal somatic cells. According to this model, telomerase provides a growth advantage to cells in which extensive terminal sequence loss threatens viability. To test these ideas, we have examined telomere dynamics and telomerase activation during mammary tumorigenesis in mice carrying a mouse mammary tumor virus long terminal repeat-driven Wnt-1 transgene. We also analyzed Wnt-1-induced mammary tumors in mice lacking p53 function. Normal mammary glands, hyperplastic mammary glands, and mammary carcinomas all had the long telomeres (20 to 50 kb) typical of Mus musculus and did not show telomere shortening during tumor development. Nevertheless, telomerase activity and the RNA component of the enzyme were consistently upregulated in Wnt-1-induced mammary tumors compared with normal and hyperplastic tissues. The upregulation of telomerase activity and RNA also occurred during tumorigenesis in p53-deficient mice. The expression of telomerase RNA correlated strongly with histone H4 mRNA in all normal tissues and tumors, indicating that the RNA component of telomerase is regulated with cell proliferation. Telomerase activity in the tumors was elevated to a greater extent than telomerase RNA, implying that the enzymatic activity of telomerase is regulated at additional levels. Our data suggest that the mechanism of telomerase activation in mouse mammary tumors is not linked to global loss of telomere function but involves multiple regulatory events including upregulation of telomerase RNA in proliferating cells.


2005 ◽  
Vol 25 (8) ◽  
pp. 2924-2937 ◽  
Author(s):  
Kaoru Tominaga ◽  
Bhakti Kirtane ◽  
James G. Jackson ◽  
Yuji Ikeno ◽  
Takayoshi Ikeda ◽  
...  

ABSTRACT MRG15 is a highly conserved protein, and orthologs exist in organisms from yeast to humans. MRG15 associates with at least two nucleoprotein complexes that include histone acetyltransferases and/or histone deacetylases, suggesting it is involved in chromatin remodeling. To study the role of MRG15 in vivo, we generated knockout mice and determined that the phenotype is embryonic lethal, with embryos and the few stillborn pups exhibiting developmental delay. Immunohistochemical analysis indicates that apoptosis in Mrg15 − / − embryos is not increased compared with wild-type littermates. However, the number of proliferating cells is significantly reduced in various tissues of the smaller null embryos compared with control littermates. Cell proliferation defects are also observed in Mrg15 − / − mouse embryonic fibroblasts. The hearts of the Mrg15 − / − embryos exhibit some features of hypertrophic cardiomyopathy. The increase in size of the cardiomyocytes is most likely a response to decreased growth of the cells. Mrg15 − / − embryos appeared pale, and microarray analysis revealed that α-globin gene expression was decreased in null versus wild-type embryos. We determined by chromatin immunoprecipitation that MRG15 was recruited to the α-globin promoter during dimethyl sulfoxide-induced mouse erythroleukemia cell differentiation. These findings demonstrate that MRG15 has an essential role in embryonic development via chromatin remodeling and transcriptional regulation.


2008 ◽  
Vol 4 ◽  
pp. T633-T634
Author(s):  
Ivica Granic ◽  
Csaba Nyakas ◽  
Gabor G. Kovacs ◽  
Paul G.M. Luiten ◽  
Ulrich L.M. Eisel

Development ◽  
2000 ◽  
Vol 127 (6) ◽  
pp. 1267-1276 ◽  
Author(s):  
P.D. Jenik ◽  
V.F. Irish

The shoot apical meristem of Arabidopsis thaliana consists of three cell layers that proliferate to give rise to the aerial organs of the plant. By labeling cells in each layer using an Ac-based transposable element system, we mapped their contributions to the floral organs, as well as determined the degree of plasticity in this developmental process. We found that each cell layer proliferates to give rise to predictable derivatives: the L1 contributes to the epidermis, the stigma, part of the transmitting tract and the integument of the ovules, while the L2 and L3 contribute, to different degrees, to the mesophyll and other internal tissues. In order to test the roles of the floral homeotic genes in regulating these patterns of cell proliferation, we carried out similar clonal analyses in apetala3-3 and agamous-1 mutant plants. Our results suggest that cell division patterns are regulated differently at different stages of floral development. In early floral stages, the pattern of cell divisions is dependent on position in the floral meristem, and not on future organ identity. Later, during organogenesis, the layer contributions to the organs are controlled by the homeotic genes. We also show that AGAMOUS is required to maintain the layered structure of the meristem prior to organ initiation, as well as having a non-autonomous role in the regulation of the layer contributions to the petals.


Development ◽  
1992 ◽  
Vol 115 (3) ◽  
pp. 813-820
Author(s):  
L.L. Harris ◽  
J.C. Talian ◽  
P.S. Zelenka

The present study uses the polymerase chain reaction and in situ hybridization to examine c-myc and N-myc mRNA in the embryonic chicken lens at 6, 10, 14 and 19 days of development and compares the pattern of expression obtained with the developmental pattern of cell proliferation and differentiation. In the central epithelium, c-myc mRNA levels were proportional to the percentage of proliferating cells throughout development. N-myc mRNA expression in this region was relatively low and showed no correlation with cell proliferation. The ratio of N-myc to c-myc mRNA increased markedly with the onset of epithelial cell elongation and terminal fiber cell differentiation, although both c-myc and N-myc mRNAs continued to be expressed in postmitotic, elongating cells of the equatorial epithelium and in terminally differentiating lens fiber cells. Thus, increased expression of N-myc, a gene whose protein product may compete with c-myc protein for dimerization partners, accompanies the dissociation of c-myc expression and cell proliferation during terminal differentiation of lens fiber cells.


2019 ◽  
Vol 45 (2) ◽  
pp. 97-109
Author(s):  
Nora Awadallah ◽  
Kara Proctor ◽  
Kyle B Joseph ◽  
Eugene R Delay ◽  
Rona J Delay

Abstract Chemotherapy patients often experience chemosensory changes during and after drug therapy. The chemotherapy drug, cyclophosphamide (CYP), has known cytotoxic effects on sensory and proliferating cells of the taste system. Like the taste system, cells in the olfactory epithelia undergo continuous renewal. Therefore, we asked if a single injection of 75 mg/kg CYP would affect cell proliferation in the anterior dorsomedial region of the main olfactory epithelium (MOE) and the vomeronasal organ (VNO) from 0 to 125 days after injection. Both epithelia showed a decrease in Ki67-labeled cells compared to controls at day 1 and no Ki67+ cells at day 2 postinjection. In the sensory layer of the MOE, cell proliferation began to recover 4 days after CYP injection and by 6 days, the rate of proliferation was significantly greater than controls. Ki67+ cells peaked 30 days postinjection, then declined to control levels at day 45. Similar temporal sequences of initial CYP-induced suppression of cell proliferation followed by elevated rates peaking 30–45 days postinjection were seen in the sustentacular layer of the MOE and all 3 areas (sensory, sustentacular, marginal) of the VNO. CYP affected proliferation in the sensory layer of the MOE more than the sustentacular layer and all 3 areas of the VNO. These findings suggest that chemotherapy involving CYP is capable of affecting cell renewal of the olfactory system and likely contributes to clinical loss of function during and after chemotherapy.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Gang Wu ◽  
Zhixi Li ◽  
Youyu Wang ◽  
Xueming Ju ◽  
Rui Huang

Hepatocellular carcinoma (HCC) is the most common type of malignancy of the liver and has been reported as the third most frequent cause of cancer associated death worldwide. Accumulating evidence showed that the expression of miR-34a was abnormal in HCC patients; however, the role of miR-34a in HCC is not clear. In this study, we have observed low expression of the miR-34a in both HCC tissues and hepatoma cell line as compared to normal control. Further to investigate the role of miR-34a in HCC development, HepG2 cells were transfected with miR-34a mimic. Following transfection, miR-34a expression was significantly increased, which further repressed proliferation of HepG2 cells. Bioinformatics, Luciferase Reporter, RT-qPCR, and western blotting assays indicated that special AT-rich sequence-binding protein-2 (SATB2) is a direct target of miR-34a in HCC cells. There was a negative correlation between the expression levels of SATB2 and miR-34a. Investigation into the molecular mechanism indicated that miR-34a regulated cell proliferation through inhibiting SATB2. Therefore, the results of the present study may improve understanding regarding the role of miR-34a in regulating cell proliferation and contribute to the development of novel therapy of HCC.


Sign in / Sign up

Export Citation Format

Share Document