scholarly journals Plasma Technology Increases the Efficacy of Prothioconazole against Fusarium graminearum and Fusarium proliferatum Contamination of Maize (Zea mays) Seedlings

2021 ◽  
Vol 22 (17) ◽  
pp. 9301
Author(s):  
Mario Masiello ◽  
Stefania Somma ◽  
Chiara Lo Porto ◽  
Fabio Palumbo ◽  
Pietro Favia ◽  
...  

The contamination of maize by Fusarium species able to produce mycotoxins raises great concern worldwide since they can accumulate these toxic metabolites in field crop products. Furthermore, little information exists today on the ability of Fusarium proliferatum and Fusarium graminearum, two well know mycotoxigenic species, to translocate from the seeds to the plants up to the kernels. Marketing seeds coated with fungicide molecules is a common practice; however, since there is a growing need for reducing chemicals in agriculture, new eco-friendly strategies are increasingly tested. Technologies based on ionized gases, known as plasmas, have been used for decades, with newer material surfaces, products, and approaches developed continuously. In this research, we tested a plasma-generated bilayer coating for encapsulating prothioconazole at the surface of maize seeds, to protect them from F. graminearum and F. proliferatum infection. A minimum amount of chemical was used, in direct contact with the seeds, with no dispersion in the soil. The ability of F. graminearum and F. proliferatum species to translocate from seeds to seedlings of maize has been clearly proven in our in vitro experiments. As for the use of plasma technology, the combined use of the plasma-generated coating with embedded prothioconazole was the most efficient approach, with a higher reduction of the infection of the maize seminal root system and stems. The debated capability of the two Fusarium species to translocate from seeds to seedlings has been demonstrated. The plasma-generated coating with embedded prothioconazole resulted in a promising sustainable approach for the protection of maize seedlings.

2021 ◽  
Vol 9 (8) ◽  
pp. 1647
Author(s):  
Gui-E Li ◽  
Wei-Liang Kong ◽  
Xiao-Qin Wu ◽  
Shi-Bo Ma

Phytase plays an important role in crop seed germination and plant growth. In order to fully understand the plant growth-promoting mechanism by Rahnella aquatilis JZ-GX1,the effect of this strain on germination of maize seeds was determined in vitro, and the colonization of maize root by R. aquatilis JZ-GX1 was observed by scanning electron microscope. Different inoculum concentrations and Phytate-related soil properties were applied to investigate the effect of R. aquatilis JZ-GX1 on the growth of maize seedlings. The results showed that R. aquatilis JZ-GX1 could effectively secrete indole acetic acid and had significantly promoted seed germination and root length of maize. A large number of R. aquatilis JZ-GX1 cells colonized on the root surface, root hair and the root interior of maize. When the inoculation concentration was 107 cfu/mL and the insoluble organophosphorus compound phytate existed in the soil, the net photosynthetic rate, chlorophyll content, phytase activity secreted by roots, total phosphorus concentration and biomass accumulation of maize seedlings were the highest. In contrast, no significant effect of inoculation was found when the total P content was low or when inorganic P was sufficient in the soil. R. aquatilis JZ-GX1 promotes the growth of maize directly by secreting IAA and indirectly by secreting phytase. This work provides beneficial information for the development and application of R. aquatilis JZ-GX1 as a microbial fertilizer in the future.


2018 ◽  
Vol 7 (1) ◽  
pp. 31-49
Author(s):  
Narges Atabaki ◽  
Vahid Rahjoo ◽  
Mohamed M. Hanafi ◽  
Rambod Abiri ◽  
Hamidreza Z. Zadeh ◽  
...  

Fusarium verticillioides and Fusarium proliferatum cause a wide range of maize diseases.  These fungi produce dangerous mycotoxins, such as fumonisin B1, which are important threats to humans and animals. Given this predicament, the present study aimed to identify the fungi both molecular-morphologically and also investigate the pathogenicity variation and mating type of 41 Fusarium strains in maize (Zea mays L.) samples with sifting their fumonisin contents.  Furthermore, species-specific primers for the molecular identification of distinct strains amplified 2 fragments of 578 and 800 bp in Fusarium verticillioides, while a single 585 bp band was amplified in Fusarium proliferatum.  Accordingly, 24 isolates out of 41 were identified as F. verticillioides, and 13 isolates were identified as F. proliferatum.  The fumonisin-producing and non-producing Fusarium strains were identified using the VERTF-1/VERTF-2 primers.  A total of 24 isolates of F. verticillioides were positively scored based on the amplification of a single 400 bp fragment.  The highest and lowest fumonisin content, as measured using an enzyme-linked immunosorbent assay (ELISA), belonged to strains MS1 and MG3, respectively, and ranged from 960-12673 and 4.07-23 ppm, respectively.  Additionally, the mating type test showed that the sexual form of the studied Fusarium species could possibly belong to the A and D mating populations.  In vivo and in vitro pathogenicity tests revealed a high susceptibility.


2011 ◽  
Vol 26 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Dario Ivic ◽  
Zdravka Sever ◽  
Biljana Kuzmanovska

Growth of 13 F. graminearum isolates, 6 F. avenaceum isolates and 6 F. verticillioides isolates was analysed on potato-dextrose agar amended with 0.1, 0.33, 1, 3.3 and 10 mg l-1 of carbendazim, tebuconazole, flutriafol, metconazole, and prochloraz. Average concentration which reduced mycelial growth by 50% comparing it to control (EC50) was calculated for each isolate. Among fungicides tested, prochloraz was shown to be the most effective in growth inhibition of all three species, while flutirafol was proven to be the least effective. Metocnazole was more efficient in comparison with carbendazim and tebuconazole. EC50 values of all isolates on prochloraz were lower than 0.1 mg l-1, while on flutirafol they ranged between 1.66 and 8.51 mg l-1 for 18 isolates, or were higher than 10 mg l-1 for 7 isolates. EC50 values on carbendazim were 0.39-1.41 mg l-1 for F. graminearum isolates, 0.91-1.35 mg l-1 for F. avenaceum, and 0.47-0.6 mg l-1 for F. verticillioides. EC50 values on tebuconazole were 0.85- 2.57 mg l-1 for F. graminearum, 0.85-1.58 mg l-1 for F. avenaceum and 0.22-0.85 mg l-1 for F. verticillioides, while on metconazole EC50 values ranged between less than 0.1 mg l-1 to 1.66, 0.56, and 0.17 mg l-1 for F. graminearum, F. avenaceum and F. verticillioides, respectively. Average growth inhibitions of different Fusarium species and all Fusarium isolates together on different concentrations of fungicides tested were significantly different. Significant differences in growth were not determined among isolates of the same species on neither one of fungicides tested, indicating that no decreased sensitivity to the fungicides exists among isolates included in the study.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1725
Author(s):  
Elisabetta Troni ◽  
Giovanni Beccari ◽  
Roberto D’Amato ◽  
Francesco Tini ◽  
David Baldo ◽  
...  

In this study, the in vitro effects of different Se concentrations (5, 10, 15, 20, and 100 mg kg−1) from different Se forms (sodium selenite, sodium selenate, selenomethionine, and selenocystine) on the development of a Fusarium proliferatum strain isolated from rice were investigated. A concentration-dependent effect was detected. Se reduced fungal growth starting from 10 mg kg−1 and increasing the concentration (15, 20, and 100 mg kg−1) enhanced the inhibitory effect. Se bioactivity was also chemical form dependent. Selenocystine was found to be the most effective at the lowest concentration (5 mg kg−1). Complete growth inhibition was observed at 20 mg kg−1 of Se from selenite, selenomethionine, and selenocystine. Se speciation analysis revealed that fungus was able to change the Se speciation when the lowest Se concentration was applied. Scanning Electron Microscopy showed an alteration of the fungal morphology induced by Se. Considering that the inorganic forms have a higher solubility in water and are cheaper than organic forms, 20 mg kg−1 of Se from selenite can be suggested as the best combination suitable to inhibit F. proliferatum strain. The addition of low concentrations of Se from selenite to conventional fungicides may be a promising alternative approach for the control of Fusarium species.


2012 ◽  
Vol 38 (No. 2) ◽  
pp. 46-54 ◽  
Author(s):  
J. Nedělník

In 1998 and 1999 a total of 84 samples of corn, predominantly from localities in southern and central Moravia, were collected either directly from fields (entire ears at harvest maturity) or as grain from merchants. The objectives of the experiments were (a) to determine, on the basis of the results from mycological and toxicological analyses, the basic spectrum of fungal contaminants of corn in the Czech Republic with special reference to the genus Fusarium, and (b) to determine by enzyme immunoassay the presence of major toxic metabolites such as deoxynivalenol (DON), T-2 toxin (T-2), zearalenone (ZEA), and fumonisins (FUM) in grain samples. From naturally infected corn, representatives of seven fungal genera were isolated under in vitro conditions in both harvest years. Most frequent were species of the genus Fusarium (mean contamination of 44.6%). The next frequent genus was Stemphylium (29.3%). Eight species of Fusarium were found. In both years the most frequent species was Fusarium graminearum (1998 – 42.75%, 1999 – 41.8%), followed by F. culmorum. DON was found in 95.2% of the samples; its content ranged from 25 to 285 µg/kg. The content of T-2 varied more than that of DON, ranging from 12 to 875 µg/kg. Zearalenone content was more varied than that of the trichothecene-type compounds; 17% of the samples did not contain ZEA, the maximum content was 110 µg/kg. No FUM were found in 17% of the samples; in the others, FUM ranged from 12 to nearly 1000 µg/kg. Compared with the other three compounds, fumonisins showed generally the highest levels.


Biologia ◽  
2008 ◽  
Vol 63 (3) ◽  
Author(s):  
Antónia Šrobárová ◽  
Svetlana Šliková ◽  
Valéria Šudyova

AbstractSpecies associated with Fusarium head blight are depending on the production and edaphic conditions. The differences are found in the representation of various Fusarium spp. in the diseases, which sporadically occur all over the territory of Slovakia, in all agricultural production types. We identified fifteen Fusarium species during ten years of investigation. Most of the mentioned species F. culmorum (W.G. Smith) Sacc., F. graminearum Schwabe, recently F. cerealis (Cooke) Sacc. (crookwellense Burgess, Nelson & Tousson) and F. sambucinum Fuckel in diseased caryopsis are seed transmitted. The significant differences among species and intra species in cultural and pathogenicity assays in vitro and in vivo were correlated. Some of them are able to produce toxic metabolites — deoxynivalenone, which probably play a role in the aggressiveness of the pathogen and promote disease development and pathogen colonization.


Plant Disease ◽  
2013 ◽  
Vol 97 (2) ◽  
pp. 284-284 ◽  
Author(s):  
I. H. Al Mahmooli ◽  
F. Al Balushi ◽  
O. Doyle ◽  
A. M. Al Sadi ◽  
M. L. Deadman

Hybrid gladiolus varieties have potential as a major ornamental crop in Oman. Grown for the cut-flower industry, their production has increased significantly in recent years. In 2010, during a field trial of two hybrid varieties (Red Majesty and Mascagni) grown in sandy soil at Al Moballah, Muscat, approximately 3% of Red Majesty plants and 12% of Mascagni plants showed signs of wilting and yellowing prior to plant death. In all cases, tissue taken from 20 diseased corms yielded Fusarium-like colonies on potato dextrose agar (PDA). Colonies were light to dark purple in color with dense and abundant aerial mycelium; macroconidia were 33.8 × 4.8 μm with 3 to 5 septa per spore; microconidia were 13.5 × 4.8 μm with 0 to 1 septa per spore and were in chains (mean of 50 spores in both cases). No chlamydospores were observed. In vitro characters and spore measurements conformed to previously described features of Fusarium proliferatum (Matsushima) Nirenberg (2). Mycelial plugs (5 mm in diameter) were taken from 5-day-old cultures of F. proliferatum grown on 2.5% PDA and wrapped on the base of Gladiolus corms using Parafilm and wet cotton. The Parafilm was removed after 7 days of inoculation. The corms were kept in moistened polythene bags for and symptoms were recorded. Control corms were inoculated using PDA (1). Artificial inoculations resulted in rot symptoms on all corms within 14 days and fungal colonies identical to initial isolations were recovered from artificially infected corms. Rotting was not observed in corms inoculated using PDA alone. Identification of F. proliferatum was confirmed using sequences of the internal transcribed spacer (ITS) of the ribosomal DNA (ITS1 and ITS4 primers) and sequences of the translation elongation factor alpha (TEF-1) gene (EF-1-986 and EF-728 primers). The ITS and TEF-1 sequences were found to share 99.8% and 99.6% nucleotide similarity to previously published sequences of the ITS (HQ113948) and EF (JN092351) regions of F. proliferatum in GenBank, respectively. The ITS sequence of one isolate was assigned GenBank Accession No. JN86006. To our knowledge, this is the first report of the occurrence of F. proliferatum in Oman or in the Arabian Peninsula. References: (1) C. Linfield. Ann. Appl. Biol. 121:175, 1983. (2) P. E. Nelson et al. Fusarium Species: An Illustrated Manual for Identification. Pennsylvania State University Press, USA, 1983.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1192
Author(s):  
Francesco Tini ◽  
Giovanni Beccari ◽  
Gianpiero Marconi ◽  
Andrea Porceddu ◽  
Micheal Sulyok ◽  
...  

DNA methylation mediates organisms’ adaptations to environmental changes in a wide range of species. We investigated if a such a strategy is also adopted by Fusarium graminearum in regulating virulence toward its natural hosts. A virulent strain of this fungus was consecutively sub-cultured for 50 times (once a week) on potato dextrose agar. To assess the effect of subculturing on virulence, wheat seedlings and heads (cv. A416) were inoculated with subcultures (SC) 1, 23, and 50. SC50 was also used to re-infect (three times) wheat heads (SC50×3) to restore virulence. In vitro conidia production, colonies growth and secondary metabolites production were also determined for SC1, SC23, SC50, and SC50×3. Seedling stem base and head assays revealed a virulence decline of all subcultures, whereas virulence was restored in SC50×3. The same trend was observed in conidia production. The DNA isolated from SC50 and SC50×3 was subject to a methylation content-sensitive enzyme and double-digest, restriction-site-associated DNA technique (ddRAD-MCSeEd). DNA methylation analysis indicated 1024 genes, whose methylation levels changed in response to the inoculation on a healthy host after subculturing. Several of these genes are already known to be involved in virulence by functional analysis. These results demonstrate that the physiological shifts following sub-culturing have an impact on genomic DNA methylation levels and suggest that the ddRAD-MCSeEd approach can be an important tool for detecting genes potentially related to fungal virulence.


Author(s):  
Letizia Mondani ◽  
Giorgio Chiusa ◽  
Paola Battilani

AbstractThe aim of the study was to test in vitro and in vivo the efficacy of triazoles and biocontrol agents (BCAs) against Fusarium proliferatum and F. oxysporum, the former signaled as the main causal agent of garlic dry rot and the latter also involved. In vitro trials were organized using potato dextrose agar with added chemicals or BCAs inoculated with selected F. proliferatum and F. oxysporum. Garlic cloves were dipped before sowing in suspensions prepared with the fungicides showing the best performances in vitro; then they were dipped in Fusaria suspension before sowing. In in vitro trials, the maximum Fusaria growth inhibition was performed by Propiconazole + Prochloraz (100%), followed by Tebuconazole (88.9%). BCAs showed great capacity to control Fusaria, with a maximum growth inhibition of 80% (Trichoderma harzianum + T. gamsii). In vivo bacterial BCAs showed a similar capacity to control F. proliferatum and F. oxysporum compared to chemical products (mean of severity index 18.6% and 11.7%, respectively). In vivo results confirmed the in vitro performances, except for Trichoderma, which had the worst performances in vivo. Therefore, the results are preliminary but promising for future field application.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 463
Author(s):  
Amal Rabaaoui ◽  
Chiara Dall’Asta ◽  
Laura Righetti ◽  
Antonia Susca ◽  
Antonio Logrieco ◽  
...  

In 2017–2018, extensive symptoms of sudden decline and fruit rot were observed on date palms in southern Tunisia. Samples of diseased plants were randomly collected in six localities. Based on morphological identification, Fusarium was the most frequent fungal genus detected. A sequencing of translation elongation factor, calmodulin, and second largest subunit of RNA polymerase II genes was used to identify 63 representative Fusarium strains at species level and investigate their phylogenetic relationships. The main species detected was Fusarium proliferatum, and at a much lesser extent, Fusarium brachygibbosum, Fusarium caatingaense, Fusarium clavum, Fusarium incarnatum, and Fusarium solani. Pathogenicity on the Deglet Nour variety plantlets and the capability to produce mycotoxins were also assessed. All Fusarium species were pathogenic complying Koch’s postulates. Fusarium proliferatum strains produced mainly fumonisins (FBs), beauvericin (BEA), and, to a lesser extent, enniatins (ENNs) and moniliformin (MON). All F. brachygibbosum strains produced low levels of BEA, diacetoxyscirpenol, and neosolaniol; two strains produced also T-2 toxin, and a single strain produced HT-2 toxin. Fusarium caatingaense, F. clavum, F. incarnatum produced only BEA. Fusarium solani strains produced MON, BEA, and ENNs. This work reports for the first time a comprehensive multidisciplinary study of Fusarium species on date palms, concerning both phytopathological and food safety issues.


Sign in / Sign up

Export Citation Format

Share Document