scholarly journals miR-542-3p Attenuates Bone Loss and Marrow Adiposity Following Methotrexate Treatment by Targeting sFRP-1 and Smurf2

2021 ◽  
Vol 22 (20) ◽  
pp. 10988
Author(s):  
Ya-Li Zhang ◽  
Liang Liu ◽  
Yu-Wen Su ◽  
Cory J. Xian

Intensive methotrexate (MTX) treatment for childhood malignancies decreases osteogenesis but increases adipogenesis from the bone marrow stromal cells (BMSCs), resulting in bone loss and bone marrow adiposity. However, the underlying mechanisms are unclear. While microRNAs (miRNAs) have emerged as bone homeostasis regulators and miR-542-3p was recently shown to regulate osteogenesis in a bone loss context, the role of miR-542-3p in regulating osteogenesis and adipogenesis balance is not clear. Herein, in a rat MTX treatment-induced bone loss model, miR-542-3p was found significantly downregulated during the period of bone loss and marrow adiposity. Following target prediction, network construction, and functional annotation/ enrichment analyses, luciferase assays confirmed sFRP-1 and Smurf2 as the direct targets of miR-542-3p. miRNA-542-3p overexpression suppressed sFRP-1 and Smurf2 expression post-transcriptionally. Using in vitro models, miR-542-3p treatment stimulated osteogenesis but attenuated adipogenesis following MTX treatment. Subsequent signalling analyses revealed that miR-542-3p influences Wnt/β-catenin and TGF-β signalling pathways in osteoblastic cells. Our findings suggest that MTX treatment-induced bone loss and marrow adiposity could be molecularly linked to miR-542-3p pathways. Our results also indicate that miR-542-3p might be a therapeutic target for preserving bone and attenuating marrow fat formation during/after MTX chemotherapy.

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1926
Author(s):  
Ya-Li Zhang ◽  
Liang Liu ◽  
Yu-Wen Su ◽  
Cory J. Xian

Methotrexate (MTX) treatment for childhood malignancies has shown decreased osteogenesis and increased adipogenesis in bone marrow stromal cells (BMSCs), leading to bone loss and bone marrow adiposity, for which the molecular mechanisms are not fully understood. Currently, microRNAs (miRNAs) are emerging as vital mediators involved in bone/bone marrow fat homeostasis and our previous studies have demonstrated that miR-6315 was upregulated in bones of MTX-treated rats, which might be associated with bone/fat imbalance by directly targeting Smad2. However, the underlying mechanisms by which miR-6315 regulates osteogenic and adipogenic differentiation require more investigations. Herein, we further explored and elucidated the regulatory roles of miR-6315 in osteogenesis and adipogenesis using in vitro cell models. We found that miR-6315 promotes osteogenic differentiation and it alleviates MTX-induced increased adipogenesis. Furthermore, our results suggest that the involvement of miR-6315 in osteogenesis/adipogenesis regulation might be partially through modulating the TGF-β/Smad2 signalling pathway. Our findings indicated that miR-6315 may be important in regulating osteogenesis and adipogenesis and might be a therapeutic target for preventing/attenuating MTX treatment-associated bone loss and marrow adiposity.


2021 ◽  
pp. 028418512098693
Author(s):  
Yin Liu ◽  
Huayi Tan ◽  
Can Huang ◽  
Lifeng Li ◽  
Sijie Wu

Background Polyphenols in extra virgin olive oil (EVOO) have been found to reduce the expression of PPARγ2, inhibit adipocyte differentiation, and enhance the formation of osteoblasts from bone marrow stem cells. However, the underlying mechanisms of their action remain unknown. Purpose To determine the sequential effects of EVOO on marrow fat expansion induced by estrogen deprivation using 3.0-T proton magnetic resonance (MR) spectroscopy in an ovariectomy (OVX) rabbit model of postmenopausal bone loss over a six-month period. Material and Methods A total of 45 female New Zealand rabbits were equally divided into sham-operation, OVX controls, and OVX treated with EVOO for six months. Marrow fat fraction was measured by MR spectroscopy at baseline conditions, and three and six months postoperatively, respectively. Serum bone biomarkers, lumbar and femoral bone mineral density, microtomographic parameters, biomechanical properties, and quantitative parameters of marrow adipocytes were studied. Results OVX was associated with marrow adiposity in a time-dependent manner, accompanied with increased bone turnover and impaired bone mass and trabecular microarchitecture. In OVX rabbits, EVOO markedly alleviated trabecular bone loss and reduced the accumulation of lipid droplets including adipocyte size, density, and areas of fat deposits in the bone marrow. EVOO prevented such changes in terms of both marrow adiposity and bone remodeling. Conclusion Early EVOO treatment may exert beneficial effects on bone by modulating marrow adiposity, which would support their protective effect against bone pathologies.


Author(s):  
Victoria Saferding ◽  
Melanie Hofmann ◽  
Julia S. Brunner ◽  
Birgit Niederreiter ◽  
Melanie Timmen ◽  
...  

AbstractBone loss is one of the consequences of aging, leading to diseases such as osteoporosis and increased susceptibility to fragility fractures and therefore considerable morbidity and mortality in humans. Here we identify microRNA 146a as an essential epigenetic switch controlling bone loss with age. Mice deficient in miR-146a show regular development of their skeleton. However, while WT mice start to lose bone with age, animals deficient in miR-146a continue to accrue bone throughout their life span. Increased bone mass is due to increased generation and activity of osteoblasts in miR-146a deficient mice as a result of sustained activation of bone anabolic Wnt signaling during aging. Deregulation of the miR-146a target genes Wnt1 and Wnt5a parallel bone accrual and osteoblast generation, which is accompanied by reduced development of bone marrow adiposity. Furthermore, miR-146a deficient mice are protected from ovariectomy induced bone loss. In humans, levels of miR-146a are increased in patients suffering fragility fractures in comparison to those who do not.These data identify miR-146a as a crucial epigenetic temporal regulator which essentially controls bone homeostasis during aging by regulating bone anabolic Wnt signaling. Therefore, miR-146a might be a powerful therapeutic target to prevent age related bone dysfunction such as the development of bone marrow adiposity and osteoporosis.


Author(s):  
Xiangru Huang ◽  
Anting Jin ◽  
Xijun Wang ◽  
Xin Gao ◽  
Hongyuan Xu ◽  
...  

The novel small molecule Napabucasin (also known as BBI608) was shown to inhibit gene transcription driven by Signal Transducer and Activator of Transcription 3 (STAT3), which is considered a promising anticancer target. Many preclinical studies have been conducted in cancer patients examining the selective targeting of cancer stem cells by Napabucasin, but few studies have examined side effects of Napabucasin in the skeleton system. In the present study, we found treating bone marrow mesenchymal stem cells (BMSCs) with Napabucasin in vitro impaired their osteogenic differentiation. In terms of mechanisms, Napabucasin disrupted differentiation of BMSCs by inhibiting the transcription of osteogenic gene osteocalcin (Ocn) through STAT3. Moreover, through micro-CT analysis we found 4 weeks of Napabucasin injections induced mouse bone loss. Histological analysis revealed that Napabucasin-induced bone loss in mice was the result of impaired osteogenesis. In conclusion, this study provided evidence for the effect of Napabucasin on mouse bone homeostasis and revealed its underlying mechanisms in vivo and in vitro.


Author(s):  
Semun Seong ◽  
Jung Ha Kim ◽  
Kabsun Kim ◽  
Inyoung Kim ◽  
Jeong-Tae Koh ◽  
...  

AbstractSTAT5 is a transcription factor that is activated by various cytokines, hormones, and growth factors. Activated STAT5 is then translocated to the nucleus and regulates the transcription of target genes, affecting several biological processes. Several studies have investigated the role of STAT5 in adipogenesis, but unfortunately, its role in adipogenesis remains controversial. In the present study, we generated adipocyte-specific Stat5 conditional knockout (cKO) (Stat5fl/fl;Apn-cre) mice to investigate the role of STAT5 in the adipogenesis of bone marrow mesenchymal stem cells (BMSCs). BMSC adipogenesis was significantly inhibited upon overexpression of constitutively active STAT5A, while it was enhanced in the absence of Stat5 in vitro. In vivo adipose staining and histological analyses revealed increased adipose volume in the bone marrow of Stat5 cKO mice. ATF3 is the target of STAT5 during STAT5-mediated inhibition of adipogenesis, and its transcription is regulated by the binding of STAT5 to the Atf3 promoter. ATF3 overexpression was sufficient to suppress the enhanced adipogenesis of Stat5-deficient adipocytes, and Atf3 silencing abolished the STAT5-mediated inhibition of adipogenesis. Stat5 cKO mice exhibited reduced bone volume due to an increase in the osteoclast number, and coculture of bone marrow-derived macrophages with Stat5 cKO adipocytes resulted in enhanced osteoclastogenesis, suggesting that an increase in the adipocyte number may contribute to bone loss. In summary, this study shows that STAT5 is a negative regulator of BMSC adipogenesis and contributes to bone homeostasis via direct and indirect regulation of osteoclast differentiation; therefore, it may be a leading target for the treatment of both obesity and bone loss-related diseases.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1059
Author(s):  
Jinyeong Yu ◽  
Sanghyuk Choi ◽  
Aran Park ◽  
Jungbeom Do ◽  
Donghyun Nam ◽  
...  

Cancer cachexia is a multifactorial systemic inflammation disease caused by complex interactions between the tumor and host tissues via soluble factors. However, whether cancer cachexia affects the bone marrow, in particular the hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), remains unclear. Here, we investigated the bone marrow and bone in a cancer cachexia animal model generated by transplanting Lewis lung carcinoma cells. The number of bone marrow mononuclear cells (BM-MNCs) started to significantly decrease in the cancer cachectic animal model prior to the discernable loss of muscle and fat. This decrease in BM-MNCs was associated with myeloid skewing in the circulation and the expansion of hematopoietic progenitors in the bone marrow. Bone loss occurred in the cancer cachexia animal model and accompanied the decrease in the bone marrow MSCs that play important roles in both supporting HSCs and maintaining bone homeostasis. Glucocorticoid signaling mediated the decrease in bone marrow MSCs in the cancer cachectic environment. The cancer cachexia environment also skewed the differentiation of the bone marrow MSCs toward adipogenic fate via JAK/STAT as well as glucocorticoid signaling. Our results suggest that the bone loss induced in cancer cachexia is associated with the depletion and the impaired differentiation capacity of the bone marrow MSCs.


2011 ◽  
Vol 300 (5) ◽  
pp. R1250-R1260 ◽  
Author(s):  
Katherine J. Motyl ◽  
Michelle Raetz ◽  
Srinivasan Arjun Tekalur ◽  
Richard C. Schwartz ◽  
Laura R. McCabe

Bone loss in type 1 diabetes is accompanied by increased marrow fat, which could directly reduce osteoblast activity or result from altered bone marrow mesenchymal cell lineage selection (adipocyte vs. osteoblast). CCAAT/enhancer binding protein beta (C/EBPβ) is an important regulator of both adipocyte and osteoblast differentiation. C/EBPβ-null mice have delayed bone formation and defective lipid accumulation in brown adipose tissue. To examine the balance of C/EBPβ functions in the diabetic context, we induced type 1 diabetes in C/EBPβ-null (knockout, KO) mice. We found that C/EBPβ deficiency actually enhanced the diabetic bone phenotype. While KO mice had reduced peripheral fat mass compared with wild-type mice, they had 5-fold more marrow adipocytes than diabetic wild-type mice. The enhanced marrow adiposity may be attributed to compensation by C/EBPδ, peroxisome proliferator-activated receptor-γ2, and C/EBPα. Concurrently, we observed reduced bone density. Relative to genotype controls, trabecular bone volume fraction loss was escalated in diabetic KO mice (−48%) compared with changes in diabetic wild-type mice (−22%). Despite greater bone loss, osteoblast markers were not further suppressed in diabetic KO mice. Instead, osteoclast markers were increased in the KO diabetic mice. Thus, C/EBPβ deficiency increases diabetes-induced bone marrow (not peripheral) adipose depot mass, and promotes additional bone loss through stimulating bone resorption. C/EBPβ-deficiency also reduced bone stiffness and diabetes exacerbated this (two-way ANOVA P < 0.02). We conclude that C/EBPβ alone is not responsible for the bone vs. fat phenotype switch observed in T1 diabetes and that suppression of CEBPβ levels may further bone loss and decrease bone stiffness by increasing bone resorption.


1993 ◽  
Vol 16 (5_suppl) ◽  
pp. 8-12 ◽  
Author(s):  
A.M. Vannucchi ◽  
A. Bosi ◽  
A. Grossi ◽  
S. Guidi ◽  
R. Saccardi ◽  
...  

The issue of the role of erythropoietin (Epo) in the erythroid reconstitution after bone marrow transplantation (BMT) has been addressed in several recent studies. A defective Epo production in response to anemia has been shown to occur in patients undergoing allogeneic BMT unlike in most of those subjected to an autologous rescue. The factors involved in the inadeguate Epo production in BMT are discussed, with particular attention to the role of the immunosuppressive drug cyclosporin-A, which has been shown to inhibit Epo production in both in vivo and in vitro models. The observation of defective Epo production eventually led to the development of clinical trials of recombinant human Epo (rhEpo) administration in BMT patients; the aims of these studies were to stimulate erythroid engraftment, hence reducing blood transfusion exposure. Although the number of patients studied up to now is relatively small, a benefit from rhEpo administration in terms of accelerated erythroid engraftment seems very likely, and it may also be associated with decreased transfusional needs in most treated patients. However, further studies are needed to better define indications, dosages and schedules of rhEpo in BMT patients.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 609 ◽  
Author(s):  
Amjad Khan ◽  
Muhammad Ikram ◽  
Jong Ryeal Hahm ◽  
Myeong Ok Kim

Neurodegenerative disorders have emerged as a serious health issue in the current era. The most common neurodegenerative disorders are Alzheimer’s disease (AD), Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis (ALS). These diseases involve progressive impairment of neurodegeneration and memory impairment. A wide range of compounds have been identified as potential neuroprotective agents against different models of neurodegeneration both in vivo and in vitro. Hesperetin, a flavanone class of citrus flavonoid, is a derivative of hesperidin found in citrus fruits such as oranges, grapes, and lemons. It has been extensively reported that hesperetin exerts neuroprotective effects in experimental models of neurodegenerative diseases. In this systematic review, we have compiled all the studies conducted on hesperetin in both in vivo and in vitro models of neurodegeneration. Here, we have used an approach to lessen the bias in each study, providing a least biased, broad understanding of findings and impartial conclusions of the strength of evidence and the reliability of findings. In this review, we collected different papers from a wide range of journals describing the beneficial effects of hesperetin on animal models of neurodegeneration. Our results demonstrated consistent neuroprotective effects of hesperetin against different models of neurodegeneration. In addition, we have summarized its underlying mechanisms. This study provides the foundations for future studies and recommendations of further mechanistic approaches to conduct preclinical studies on hesperetin in different models.


2019 ◽  
Vol 35 (2) ◽  
pp. 326-332 ◽  
Author(s):  
Gina N Woods ◽  
Susan K Ewing ◽  
Sigurdur Sigurdsson ◽  
Deborah M Kado ◽  
Gudny Eiriksdottir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document