scholarly journals Inducible Enrichment of Osa-miR1432 Confers Rice Bacterial Blight Resistance through Suppressing OsCaML2

2021 ◽  
Vol 22 (21) ◽  
pp. 11367
Author(s):  
Yanfeng Jia ◽  
Quanlin Li ◽  
Yuying Li ◽  
Wenxue Zhai ◽  
Guanghuai Jiang ◽  
...  

MicroRNAs (miRNAs) handle immune response to pathogens by adjusting the function of target genes in plants. However, the experimentally documented miRNA/target modules implicated in the interplay between rice and Xanthomonas oryzae pv. oryzae (Xoo) are still in the early stages. Herein, the expression of osa-miR1432 was induced in resistant genotype IRBB5, but not susceptible genotype IR24, under Xoo strain PXO86 attack. Overexpressed osa-miR1432 heightened rice disease resistance to Xoo, indicated by enhancive enrichment of defense marker genes, raised reactive oxygen species (ROS) levels, repressed bacterial growth and shortened leaf lesion length, whilst the disruptive accumulation of osa-miR1432 accelerated rice susceptibility to Xoo infection. Noticeably, OsCaML2 (LOC_Os03g59770) was experimentally confirmed as a target gene of osa-miR1432, and the overexpressing OsCaML2 transgenic plants exhibited compromised resistance to Xoo infestation. Our results indicate that osa-miR1432 and OsCaML2 were differently responsive to Xoo invasion at the transcriptional level and fine-tune rice resistance to Xoo infection, which may be referable in resistance gene discovery and valuable in the pursuit of improving Xoo resistance in rice breeding.

2013 ◽  
Vol 709 ◽  
pp. 858-861
Author(s):  
De Ming Han ◽  
Zi Jun Shen ◽  
Li Hui Zhao

MicroRNAs are small non-coding RNAs that act at the post-transcriptional level, regulating protein expression by repressing translation or destabilizing mRNA target. We searched information about miR-155 in miRBase. Target genes of miR-155 are predicted by four miRNA target gene prediction softwares. The result shows that miR-155 was involved in proliferation, differentiation and apoptosis. These results can contribute to further study on the role of microRNA in diagnosis and treatment of cancer.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zheng Wang ◽  
Qianqian Meng ◽  
Xi Zhu ◽  
Shiwei Sun ◽  
Aiqin Liu ◽  
...  

Abstract Diaphania caesalis (Walker) is an important boring insect mainly distributed in subtropical and tropical areas and attacked tropical woody grain crops, such as starchy plants of Artocarpus. Quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful approach for investigating target genes expression profiles at the transcriptional level. However, the identification and selection of internal reference genes, which is often overlooked, is the most vital step before the analysis of target gene expression by qRT-PCR. So far, the reliable internal reference genes under a certain condition of D. caesalis have not been investigated. Therefore, this study evaluated the expression stability of eight candidate reference genes including ACT, β-TUB, GAPDH, G6PDH, RPS3a, RPL13a, EF1α, and EIF4A in different developmental stages, tissues and sexes using geNorm, NormFinder and BestKeeper algorithms. To verify the stability of the recommended internal reference genes, the expression levels of DcaeOBP5 were analyzed under different treatment conditions. The results indicated that ACT, RPL13a, β-TUB, RPS3a, and EF1α were identified as the most stable reference genes for further studies on target gene expression involving different developmental stages of D. caesalis. And ACT and EIF4A were recommended as stable reference genes for different tissues. Furthermore, ACT, EF1α, and RPS3a were ranked as the best reference genes in different sexes based on three algorithms. Our research represents the critical first step to normalize qRT-PCR data and ensure the accuracy of expression of target genes involved in phylogenetic and physiological mechanism at the transcriptional level in D. caesalia.


2020 ◽  
Vol 245 (5) ◽  
pp. 395-401
Author(s):  
Pai-Sheng Chen ◽  
Shao-Chieh Lin ◽  
Shaw-Jenq Tsai

The discovery of microRNA (miRNA) significantly extends our knowledge on gene regulation and noncoding gene functions. MiRNAs are important post-transcriptional regulators involve in a wide range of biological functions and diseases, including cancer. MiRNAs are produced by a unique biogenesis pathway involving the two-step sequential nuclear and cytoplasmic RNase-dependent processing at post-transcriptional level. However, a specific (set) of miRNA(s) is (are) synthesized under certain circumstance or developmental/pathological stage to fine-tune the gene expression profile. In this minireview, we will discuss the mechanism of miRNA biogenesis in cancer, mainly focusing on how Drosha and Dicer, two critical molecules controlling miRNA biogenesis, are modulated and which factor contributes to the specificity of selected miRNA maturation. Impact statement The canonical maturation pathway of miRNAs is highly conserved, indicating the crucial roles of these mini-regulators in most cellular processes. Dysregulation of specific miRNAs or imbalance of miRNA abundance has been observed in cancers. Accumulating evidence has shown that the interplay between miRNA processing factors and regulatory proteins previously known as key players in cancer malignancy regulates the biogenesis of miRNAs, expression of target genes, and eventually the alteration of cellular phenotypes. This minireview summarizes the current findings in the modulation of miRNA biogenesis in cancer to advance the understanding of how noncoding RNA contributes to cancer development and malignancy.


Author(s):  
Trương Thị Hồng Hải ◽  
Trần Viết Thắng ◽  
Phan Thị Phương Nhi ◽  
Trần Đăng Hòa

Abstract: Xanthomanas campestris pv. oryzae is the causal agent of rice bacterial blight, a destructive rice disease worldwide, is increasing recently in Vietnam. Many people attempted to control this disease by chemical sprays. However, there are claims and counterclaims about the performance of many chemicals because they are hazardous to human health and environment. The most accepted and promising strategy is breeding resistant cultivars. In this study, 66 rice lines provided by IRRI were evaluated the resistance to bacterial leaf blight in Thua Thien Hue of Vietnam. The experiment was laid out in a completely randomized design (CRD) without replication in Spring-Summer 2015 in the open field at Quang Dien, Thua Thien Hue. The results showed that rice lines were high resistance against bacterial leaf blight. The IR 12 line performed the highest susceptant level to bacterial leaf blight. Based on agronomic traits and level of bacterial leaf blight resistance, IR 3, IR 4, IR 46, IR 28, IR 6, IR 18, IR 14 và IR 26 lines were selected for breeding program


2008 ◽  
Vol 98 (3) ◽  
pp. 289-295 ◽  
Author(s):  
A. S. Iyer-Pascuzzi ◽  
H. Jiang ◽  
L. Huang ◽  
S. R. McCouch

Xanthomonas oryzae pv. oryzae is the causal agent of rice bacterial blight, a destructive rice disease worldwide. The gene xa5 provides race-specific resistance to X. oryzae pv. oryzae, and encodes the small subunit of transcription factor IIA. How xa5 functions in bacterial blight resistance is not well understood, and its recessive gene action is disputed. Here we show that xa5 is inherited in a completely recessive manner and the susceptible allele Xa5 is fully dominant. In accordance with this, bacterial growth in heterozygous and homozygous susceptible lines is not significantly different. Further, one allele of Xa5 is sufficient to promote disease in previously resistant plants; additional copies are not predictive of increased lesion length. Surprisingly, a resistant nearly isogenic line (NIL) of an indica variety sustains high levels of bacterial populations compared to the susceptible NIL, yet the resistant plants restrict symptom expression. In contrast, in japonica NILs, bacterial population dynamics differ in resistant and susceptible genotypes. However, both resistant indica and japonica plants delay bacterial movement down the leaf. These results support a model in which xa5-mediated recessive resistance is the result of restricted bacterial movement, but not restricted multiplication.


Botany ◽  
2013 ◽  
Vol 91 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Julian C. Verdonk ◽  
Michael L. Sullivan

Gene silencing is a powerful technique that allows the study of the function of specific genes by selectively reducing their transcription. Several different approaches can be used, however they all have in common the artificial generation of single stranded small ribonucleic acids (RNAs) that are utilized by the endogenous gene silencing machinery of the organism. Artificial microRNAs (amiRNA) can be used to very specifically target genes for silencing because only a short sequence of 21 nucleotides of the gene of interest is used. Gene silencing via amiRNA has been developed for Arabidopsis thaliana (L.) Heynh. and rice using endogenous microRNA (miRNA) precursors and has been shown to also work effectively in other dicot species using the arabidopsis miRNA precursor. Here, we demonstrate that the arabidopsis miR319 precursor can be used to silence genes in the important forage crop species alfalfa (Medicago sativa L.) by silencing the expression of a transgenic beta-glucuronidase (GUSPlus) target gene.


1999 ◽  
Vol 19 (1) ◽  
pp. 495-504 ◽  
Author(s):  
John Sok ◽  
Xiao-Zhong Wang ◽  
Nikoleta Batchvarova ◽  
Masahiko Kuroda ◽  
Heather Harding ◽  
...  

ABSTRACT CHOP (also called GADD153) is a stress-inducible nuclear protein that dimerizes with members of the C/EBP family of transcription factors and was initially identified as an inhibitor of C/EBP binding to classic C/EBP target genes. Subsequent experiments suggested a role for CHOP-C/EBP heterodimers in positively regulating gene expression; however, direct evidence that this is the case has so far not been uncovered. Here we describe the identification of a positively regulated direct CHOP-C/EBP target gene, that encoding murine carbonic anhydrase VI (CA-VI). The stress-inducible form of the gene is expressed from an internal promoter and encodes a novel intracellular form of what is normally a secreted protein. Stress-induced expression of CA-VI is both CHOP and C/EBPβ dependent in that it does not occur in cells deficient in either gene. A CHOP-responsive element was mapped to the inducibleCA-VI promoter, and in vitro footprinting revealed binding of CHOP-C/EBP heterodimers to that site. Rescue of CA-VIexpression in c/ebpβ−/− cells by exogenous C/EBPβ and a shorter, normally inhibitory isoform of the protein known as LIP suggests that the role of the C/EBP partner is limited to targeting the CHOP-containing heterodimer to the response element and points to a preeminent role for CHOP in CA-VI induction during stress.


2021 ◽  
Vol 9 (8) ◽  
pp. 1570
Author(s):  
Chien-Hsun Huang ◽  
Chih-Chieh Chen ◽  
Yu-Chun Lin ◽  
Chia-Hsuan Chen ◽  
Ai-Yun Lee ◽  
...  

The current taxonomy of the Lactiplantibacillus plantarum group comprises of 17 closely related species that are indistinguishable from each other by using commonly used 16S rRNA gene sequencing. In this study, a whole-genome-based analysis was carried out for exploring the highly distinguished target genes whose interspecific sequence identity is significantly less than those of 16S rRNA or conventional housekeeping genes. In silico analyses of 774 core genes by the cano-wgMLST_BacCompare analytics platform indicated that csbB, morA, murI, mutL, ntpJ, rutB, trmK, ydaF, and yhhX genes were the most promising candidates. Subsequently, the mutL gene was selected, and the discrimination power was further evaluated using Sanger sequencing. Among the type strains, mutL exhibited a clearly superior sequence identity (61.6–85.6%; average: 66.6%) to the 16S rRNA gene (96.7–100%; average: 98.4%) and the conventional phylogenetic marker genes (e.g., dnaJ, dnaK, pheS, recA, and rpoA), respectively, which could be used to separat tested strains into various species clusters. Consequently, species-specific primers were developed for fast and accurate identification of L. pentosus, L. argentoratensis, L. plantarum, and L. paraplantarum. During this study, one strain (BCRC 06B0048, L. pentosus) exhibited not only relatively low mutL sequence identities (97.0%) but also a low digital DNA–DNA hybridization value (78.1%) with the type strain DSM 20314T, signifying that it exhibits potential for reclassification as a novel subspecies. Our data demonstrate that mutL can be a genome-wide target for identifying and classifying the L. plantarum group species and for differentiating novel taxa from known species.


Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 319-344
Author(s):  
Thomas R Breen

Abstract trithorax (trx) encodes chromosome-binding proteins required throughout embryogenesis and imaginal development for tissue- and cell-specific levels of transcription of many genes including homeotic genes of the ANT-C and BX-C. trx encodes two protein isoforms that contain conserved motifs including a C-terminal SET domain, central PHD fingers, an N-terminal DNA-binding homology, and two short motifs also found in the TRX human homologue, ALL1. As a first step to characterizing specific developmental functions of TRX, I examined phenotypes of 420 combinations of 21 trx alleles. Among these are 8 hypomorphic alleles that are sufficient for embryogenesis but provide different levels of trx function at homeotic genes in imaginal cells. One allele alters the N terminus of TRX, which severely impairs larval and imaginal growth. Hypomorphic alleles that alter different regions of TRX equivalently reduce function at affected genes, suggesting TRX interacts with common factors at different target genes. All hypomorphic alleles examined complement one another, suggesting cooperative TRX function at target genes. Comparative effects of hypomorphic genotypes support previous findings that TRX has tissue-specific interactions with other factors at each target gene. Some hypomorphic genotypes also produce phenotypes that suggest TRX may be a component of signal transduction pathways that provide tissue- and cell-specific levels of target gene transcription.


Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 448-455 ◽  
Author(s):  
Defu Wang ◽  
Yajun Wang ◽  
Maoqiang Fu ◽  
Shuyuan Mu ◽  
Bing Han ◽  
...  

Powdery mildew, one of devastating diseases of wheat worldwide, is caused by Erysiphe graminis f. sp. tritici, a fungal species with constant population changes, which often poses challenges in disease management with host resistance. Transgenic approaches that utilize broad-spectrum resistance may limit changes of pathogen populations and contribute to effective control of the disease. The harpin protein Hpa1, produced by the rice bacterial blight pathogen, can induce resistance to bacterial blight and blast in rice. The fragment comprising residues 10 through 42 of Hpa1, Hpa110-42, is reportedly three- to eightfold more effective than the full-length protein. This study evaluated the transgenic expression of the Hpa110-42 gene for resistance to powdery mildew in wheat caused by E. graminis f. sp. tritici. Nine Hpa110-42 transgenic wheat lines were generated. The genomic integration of Hpa110-42 was confirmed, and expression of the transgene was detected at different levels in the individual transgenic lines. Following inoculation with the E. graminis f. sp. tritici isolate Egt15 in the greenhouse, five transgenic lines had significantly higher levels of resistance to powdery mildew compared with nontransformed plants. Thus, transgenic expression of Hpa110-42 conferred resistance to one isolate of E. graminis f. sp. tritici in wheat in the greenhouse.


Sign in / Sign up

Export Citation Format

Share Document