scholarly journals Kaempferol Has Potent Protective and Antifibrillogenic Effects for α-Synuclein Neurotoxicity In Vitro

2021 ◽  
Vol 22 (21) ◽  
pp. 11484
Author(s):  
Masatoshi Inden ◽  
Ayaka Takagi ◽  
Hazuki Kitai ◽  
Taisei Ito ◽  
Hisaka Kurita ◽  
...  

Aggregation of α-synuclein (α-Syn) is implicated in the pathogenesis of Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Therefore, the removal of α-Syn aggregation could lead to the development of many new therapeutic agents for neurodegenerative diseases. In the present study, we succeeded in generating a new α-Syn stably expressing cell line using a piggyBac transposon system to investigate the neuroprotective effect of the flavonoid kaempferol on α-Syn toxicity. We found that kaempferol provided significant protection against α-Syn-related neurotoxicity. Furthermore, kaempferol induced autophagy through an increase in the biogenesis of lysosomes by inducing the expression of transcription factor EB and reducing the accumulation of α-Syn; thus, kaempferol prevented neuronal cell death. Moreover, kaempferol directly blocked the amyloid fibril formation of α-Syn. These results support the therapeutic potential of kaempferol in diseases such as synucleinopathies that are characterized by α-Syn aggregates.

2020 ◽  
Vol 11 (1) ◽  
pp. 319-327
Author(s):  
Chenlin Xu ◽  
Zijian Xiao ◽  
Heng Wu ◽  
Guijuan Zhou ◽  
Duanqun He ◽  
...  

AbstractBackgroundAlzheimer’s disease (AD) is a common neurodegenerative disorder without any satisfactory therapeutic approaches. AD is mainly characterized by the deposition of β-amyloid protein (Aβ) and extensive neuronal cell death. Curcumin, with anti-oxidative stress (OS) and cell apoptosis properties, plays essential roles in AD. However, whether bisdemethoxycurcumin (BDMC), a derivative of curcumin, can exert a neuroprotective effect in AD remains to be elucidated.MethodsIn this study, SK-N-SH cells were used to establish an in vitro model to investigate the effects of BDMC on the Aβ1–42-induced neurotoxicity. SK-N-SH cells were pretreated with BDMC and with or without compound C and EX527 for 30 min after co-incubation with rotenone for 24 h. Subsequently, western blotting, cell viability assay and SOD and GSH activity measurement were performed.ResultsBDMC increased the cell survival, anti-OS ability, AMPK phosphorylation levels and SIRT1 in SK-N-SH cells treated with Aβ1–42. However, after treatment with compound C, an AMPK inhibitor, and EX527, an SIRT1inhibitor, the neuroprotective roles of BDMC on SK-N-SH cells treated with Aβ1–42 were inhibited.ConclusionThese results suggest that BDMC exerts a neuroprotective role on SK-N-SH cells in vitro via AMPK/SIRT1 signaling, laying the foundation for the application of BDMC in the treatment of neurodegenerative diseases related to AMPK/SIRT1 signaling.


2010 ◽  
Vol 205 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Jiyeon Lee ◽  
Eunjin Lim ◽  
Yumi Kim ◽  
Endan Li ◽  
Seungjoon Park

Ghrelin is an endogenous ligand for GH secretagogue receptor type 1a (GHSR1a), and is produced and released mainly from the stomach. It has been recently demonstrated that ghrelin can function as a neuroprotective factor by inhibiting apoptotic pathways. Kainic acid (KA), an excitatory amino acid l-glutamate analog, causes neuronal death in the hippocampus; previous studies suggest that activated microglia and astrocytes actively participate in the pathogenesis of KA-induced hippocampal neurodegeneration. However, it is unclear whether ghrelin has neuroprotective effect in KA-induced hippocampal neurodegeneration. I.p. injection of KA produced typical neuronal cell death in the CA1 and CA3 pyramidal layers of the hippocampus, and the systemic administration of ghrelin significantly attenuated KA-induced neuronal cell death in these regions through the activation of GHSR1a. Ghrelin prevents KA-induced activation of microglia and astrocytes, and the expression of proinflammatory mediators tumor necrosis factor α, interleukin-1β, and cyclooxygenase-2. The inhibitory effect of ghrelin on the activation of microglia and astrocytes appears to be associated with the inhibition of matrix metalloproteinase-3 expression in damaged hippocampal neurons. Our data suggest that ghrelin has a therapeutic potential for suppressing KA-induced pathogenesis in the brain.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Solomon Habtemariam

Rosemary (Rosmarinus officinalisL.) is one of the most economically important species of the family Lamiaceae. Native to the Mediterranean region, the plant is now widely distributed all over the world mainly due to its culinary, medicinal, and commercial uses including in the fragrance and food industries. Among the most important group of compounds isolated from the plant are the abietane-type phenolic diterpenes that account for most of the antioxidant and many pharmacological activities of the plant. Rosemary diterpenes have also been shown in recent years to inhibit neuronal cell death induced by a variety of agents bothin vitroandin vivo. The therapeutic potential of these compounds for Alzheimer’s disease (AD) is reviewed in this communication by giving special attention to the chemistry of the compounds along with the various pharmacological targets of the disease. The multifunctional nature of the compounds from the general antioxidant-mediated neuronal protection to other specific mechanisms including brain inflammation and amyloid beta (Aβ) formation, polymerisation, and pathologies is discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-30 ◽  
Author(s):  
Nur Shafika Mohd Sairazi ◽  
K. N. S. Sirajudeen

In recent years, natural products, which originate from plants, animals, and fungi, together with their bioactive compounds have been intensively explored and studied for their therapeutic potentials for various diseases such as cardiovascular, diabetes, hypertension, reproductive, cancer, and neurodegenerative diseases. Neurodegenerative diseases, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis are characterized by the progressive dysfunction and loss of neuronal structure and function that resulted in the neuronal cell death. Since the multifactorial pathological mechanisms are associated with neurodegeneration, targeting multiple mechanisms of actions and neuroprotection approach, which involves preventing cell death and restoring the function to damaged neurons, could be promising strategies for the prevention and therapeutic of neurodegenerative diseases. Natural products have emerged as potential neuroprotective agents for the treatment of neurodegenerative diseases. This review focused on the therapeutic potential of natural products and their bioactive compounds to exert a neuroprotective effect on the pathologies of neurodegenerative diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fernanda Martins Marim ◽  
Danielle Cunha Teixeira ◽  
Celso Martins Queiroz-Junior ◽  
Bruno Vinicius Santos Valiate ◽  
Jose Carlos Alves-Filho ◽  
...  

Zika virus (ZIKV) is an arbovirus belonging to Flaviviridae family that emerged as a global health threat due to its association with microcephaly and other severe neurological complications, including Guillain-Barré Syndrome (GBS) and Congenital Zika Syndrome (CZS). ZIKV disease has been linked to neuroinflammation and neuronal cell death. Neurodegenerative processes may be exacerbated by metabolites produced by the kynurenine pathway, an important pathway for the degradation of tryptophan, which induces neuronal dysfunction due to enhanced excitotoxicity. Here, we exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking a target enzyme of the kynurenine pathway, the Indoleamine 2,3-dioxygenase (IDO-1). RT-PCR analysis showed increased levels of IDO-1 RNA expression in undifferentiated primary neurons isolated from wild type (WT) mice infected by ZIKV ex vivo, as well as in the brain of ZIKV-infected A129 mice. Pharmacological inhibition of IDO-1 enzyme with 1-methyl-D-tryptophan (1-MT), in both in vitro and in vivo systems, led to significant reduction of ZIKV-induced neuronal death without interfering with the ability of ZIKV to replicate in those cells. Furthermore, in vivo analyses using both genetically modified mice (IDO-/- mice) and A129 mice treated with 1-MT resulted in reduced microgliosis, astrogliosis and Caspase-3 positive cells in the brain of ZIKV-infected A129 mice. Interestingly, increased levels of CCL5 and CXCL-1 chemokines were found in the brain of 1-MT treated-mice. Together, our data indicate that IDO-1 blockade provides a neuroprotective effect against ZIKV-induced neurodegeneration, and this is amenable to inhibition by pharmacological treatment.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Sifei Yu ◽  
Lei Xie ◽  
Zhuochao Liu ◽  
Changwei Li ◽  
Yu Liang

Oxidative stress is a leading contributor to spinal cord ischemia-reperfusion (SCIR) injury. Recently, MLN4924, a potent and selective inhibitor of the NEDD8-activating enzyme, was shown to exert a neuroprotective effect against oxidative stress in vitro. However, it is unknown whether MLN4924 plays a protective role against SCIR injury. In the present study, we found that MLN4924 treatment significantly attenuated oxidative stress and neuronal cell death induced by H2O2 in SH-SY-5Y neural cells and during rat SCIR injury. Furthermore, MLN4924 administration restored neurological and motor functions in rats with SCIR injury. Mechanistically, we found that MLN4924 protects against H2O2- and SCIR injury-induced neurodegeneration by regulating sirtuin 1 (Sirt1) expression. Collectively, these findings demonstrate the neuroprotective role of MLN4924 against oxidative stress in SCIR injury via Sirt1.


2020 ◽  
Vol 21 (23) ◽  
pp. 8921
Author(s):  
Jonas Ort ◽  
Benedikt Kremer ◽  
Linda Grüßer ◽  
Romy Blaumeiser-Debarry ◽  
Hans Clusmann ◽  
...  

Effective pharmacological neuroprotection is one of the most desired aims in modern medicine. We postulated that a combination of two clinically used drugs—nimodipine (L-Type voltage-gated calcium channel blocker) and amiloride (acid-sensing ion channel inhibitor)—might act synergistically in an experimental model of ischaemia, targeting the intracellular rise in calcium as a pathway in neuronal cell death. We used organotypic hippocampal slices of mice pups and a well-established regimen of oxygen-glucose deprivation (OGD) to assess a possible neuroprotective effect. Neither nimodipine (at 10 or 20 µM) alone or in combination with amiloride (at 100 µM) showed any amelioration. Dissolved at 2.0 Vol.% dimethyl-sulfoxide (DMSO), the combination of both components even increased cell damage (p = 0.0001), an effect not observed with amiloride alone. We conclude that neither amiloride nor nimodipine do offer neuroprotection in an in vitro ischaemia model. On a technical note, the use of DMSO should be carefully evaluated in neuroprotective experiments, since it possibly alters cell damage.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yan Shi ◽  
Tian Tian ◽  
Er-Li Cai ◽  
Can Yang ◽  
Xin Yang

BackgroundIschemic stroke induces neuronal cell death and causes brain dysfunction. Preventing neuronal cell death after stroke is key to protecting the brain from stroke damage. Nevertheless, preventative measures and treatment strategies for stroke damage are scarce. Emerging evidence suggests that microRNAs (miRNAs) play critical roles in the pathogenesis of central nervous system (CNS) disorders and may serve as potential therapeutic targets.MethodsA photochemically induced thrombosis (PIT) mouse model was used as an ischemic stroke model. qRT-PCR was employed to assess changes in miRNAs in ischemic lesions of PIT-stroke mice and primary cultured neurons subjected to oxygen-glucose deprivation (OGD). 2,3,5-triphenyltetrazolium chloride (TTC) staining was performed to evaluate brain infarction tissues in vivo. TUNEL staining was employed to assess neuronal death in vitro. Neurological scores and motor coordination were investigated to evaluate stroke damage, including neurological deficits and motor function.ResultsIn vivo and in vitro results demonstrated that levels of miR-124 were significantly decreased following stroke, whereas changes in death-associated protein kinase 1 (DAPK1) levels exhibited the converse pattern. DAPK1 was identified as a direct target of miR-124. N-methyl-D-aspartate (NMDA) and OGD-induced neuronal death was rescued by miR-124 overexpression. Upregulation of miR-124 levels significantly improved PIT-stroke damage, including the overall neurological function in mice.ConclusionWe demonstrate the involvement of the miR-124/DAPK1 pathway in ischemic neuronal death. Our results highlight the therapeutic potential of targeting this pathway for ischemic stroke.


Author(s):  
Rocío Gallego ◽  
Alberto Valdés ◽  
José David Sánchez-Martínez ◽  
Zully J. Suárez-Montenegro ◽  
Elena Ibáñez ◽  
...  

Abstract Alzheimer’s disease (AD) is the most common form of dementia caused by a progressive loss of neurons from different regions of the brain. This multifactorial pathophysiology has been widely characterized by neuroinflammation, extensive oxidative damage, synaptic loss, and neuronal cell death. In this sense, the design of multi-target strategies to prevent or delay its progression is a challenging goal. In the present work, different in vitro assays including antioxidant, anti-inflammatory, and anti-cholinergic activities of a carotenoid-enriched extract from Dunaliella salina microalgae obtained by supercritical fluid extraction are studied. Moreover, its potential neuroprotective effect in the human neuron-like SH-SY5Y cell model against remarkable hallmarks of AD was also evaluated. In parallel, a comprehensive metabolomics study based on the use of charged-surface hybrid chromatography (CSH) and hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution tandem mass spectrometry (Q-TOF MS/MS) was applied to evaluate the effects of the extract on the metabolism of the treated cells. The use of advanced bioinformatics and statistical tools allowed the identification of more than 314 metabolites in SH-SY5Y cells, of which a great number of phosphatidylcholines, triacylglycerols, and fatty acids were significantly increased, while several phosphatidylglycerols were decreased, compared to controls. These lipidomic changes in cells along with the possible role exerted by carotenoids and other minor compounds on the cell membrane might explain the observed neuroprotective effect of the D. salina extract. However, future experiments using in vivo models to corroborate this hypothesis must be carried out. Graphical abstract


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3736
Author(s):  
Simona S. Ghanem ◽  
Hend S. Fayed ◽  
Qi Zhu ◽  
Jia-Hong Lu ◽  
Nishant N. Vaikath ◽  
...  

The accumulation and aggregation of α-synuclein (α-syn) is the main pathologic event in Parkinson’s disease (PD), dementia with Lewy bodies, and multiple system atrophy. α-Syn-seeded fibril formation and its induced toxicity occupy a major role in PD pathogenesis. Thus, assessing compounds that inhibit this seeding process is considered a key towards the therapeutics of synucleinopathies. Using biophysical and biochemical techniques and seeding-dependent cell viability assays, we screened a total of nine natural compounds of alkaloid origin extracted from Chinese medicinal herbs. Of these compounds, synephrine, trigonelline, cytisine, harmine, koumine, peimisine, and hupehenine exhibited in vitro inhibition of α-syn-seeded fibril formation. Furthermore, using cell viability assays, six of these compounds inhibited α-syn-seeding-dependent toxicity. These six potent inhibitors of amyloid fibril formation and toxicity caused by the seeding process represent a promising therapeutic strategy for the treatment of PD and other synucleinopathies.


Sign in / Sign up

Export Citation Format

Share Document