scholarly journals Necroptosis Inhibition by Hydrogen Sulfide Alleviated Hypoxia-Induced Cardiac Fibroblasts Proliferation via Sirtuin 3

2021 ◽  
Vol 22 (21) ◽  
pp. 11893
Author(s):  
Yue Zhang ◽  
Weiwei Gong ◽  
Mengting Xu ◽  
Shuping Zhang ◽  
Jieru Shen ◽  
...  

Myocardial ischemia or hypoxia can induce myocardial fibroblast proliferation and myocardial fibrosis. Hydrogen sulfide (H2S) is a gasotransmitter with multiple physiological functions. In our present study, primary cardiac fibroblasts were incubated with H2S donor sodium hydrosulfide (NaHS, 50 μM) for 4 h followed by hypoxia stimulation (containing 5% CO2 and 1% O2) for 4 h. Then, the preventive effects on cardiac fibroblast proliferation and the possible mechanisms were investigated. Our results showed that NaHS reduced the cardiac fibroblast number, decreased the hydroxyproline content; inhibited the EdU positive ratio; and down-regulated the expressions of α-smooth muscle actin (α-SMA), the antigen identified by monoclonal antibody Ki67 (Ki67), proliferating cell nuclear antigen (PCNA), collagen I, and collagen III, suggesting that hypoxia-induced cardiac fibroblasts proliferation was suppressed by NaHS. NaHS improved the mitochondrial membrane potential and attenuated oxidative stress, and inhibited dynamin-related protein 1 (DRP1), but enhanced optic atrophy protein 1 (OPA1) expression. NaHS down-regulated receptor interacting protein kinase 1 (RIPK1) and RIPK3 expression, suggesting that necroptosis was alleviated. NaHS increased the sirtuin 3 (SIRT3) expressions in hypoxia-induced cardiac fibroblasts. Moreover, after SIRT3 siRNA transfection, the inhibitory effects on cardiac fibroblast proliferation, oxidative stress, and necroptosis were weakened. In summary, necroptosis inhibition by exogenous H2S alleviated hypoxia-induced cardiac fibroblast proliferation via SIRT3.

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Guoliang Meng ◽  
Jinbiao Zhu ◽  
Yujiao Xiao ◽  
Zhengrong Huang ◽  
Yuqing Zhang ◽  
...  

Hydrogen sulfide (H2S) is a gasotransmitter which regulates multiple cardiovascular functions. However, the precise roles of H2S in modulating myocardial fibrosisin vivoand cardiac fibroblast proliferationin vitroremain unclear. We investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial fibrosis. Spontaneously hypertensive rats (SHR) were administrated with GYY4137 by intraperitoneal injection daily for 4 weeks. GYY4137 decreased systolic blood pressure and inhibited myocardial fibrosis in SHR as evidenced by improved cardiac collagen volume fraction (CVF) in the left ventricle (LV), ratio of perivascular collagen area (PVCA) to lumen area (LA) in perivascular regions, reduced hydroxyproline concentration, collagen I and III mRNA expression, and cross-linked collagen. GYY4137 also inhibited angiotensin II- (Ang II-) induced neonatal rat cardiac fibroblast proliferation, reduced the number of fibroblasts in S phase, decreased collagen I and III mRNA expression and protein synthesis, attenuated oxidative stress, and suppressedα-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) expression as well as Smad2 phosphorylation. These results indicate that GYY4137 improves myocardial fibrosis perhaps by a mechanism involving inhibition of oxidative stress, blockade of the TGF-β1/Smad2 signaling pathway, and decrease inα-SMA expression in cardiac fibroblasts.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lulu Liu ◽  
Weiwei Gong ◽  
Shuping Zhang ◽  
Jieru Shen ◽  
Yuqin Wang ◽  
...  

Sirtuin 3 (SIRT3) is critical in mitochondrial function and oxidative stress. Our present study investigates whether hydrogen sulfide (H2S) attenuated myocardial fibrosis and explores the possible role of SIRT3 on the protective effects. Neonatal rat cardiac fibroblasts were pretreated with NaHS followed by angiotensin II (Ang II) stimulation. SIRT3 was knocked down with siRNA technology. SIRT3 promoter activity and expression, as well as mitochondrial function, were measured. Male wild-type (WT) and SIRT3 knockout (KO) mice were intraperitoneally injected with NaHS followed by transverse aortic constriction (TAC). Myocardium sections were stained with Sirius red. Hydroxyproline content, collagen I and collagen III, α-smooth muscle actin (α-SMA), and dynamin-related protein 1 (DRP1) expression were measured both in vitro and in vivo. We found that NaHS enhanced SIRT3 promoter activity and increased SIRT3 mRNA expression. NaHS inhibited cell proliferation and hydroxyproline secretion, decreased collagen I, collagen III, α-SMA, and DRP1 expression, alleviated oxidative stress, and improved mitochondrial respiration function and membrane potential in Ang II-stimulated cardiac fibroblasts, which were unavailable after SIRT3 was silenced. In vivo, NaHS reduced hydroxyproline content, ameliorated perivascular and interstitial collagen deposition, and inhibited collagen I, collagen III, and DRP1 expression in the myocardium of WT mice but not SIRT3 KO mice with TAC. Altogether, NaHS attenuated myocardial fibrosis through oxidative stress inhibition via a SIRT3-dependent manner.


Antioxidants ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 105 ◽  
Author(s):  
Egor Plotnikov ◽  
Anna Brezgunova ◽  
Irina Pevzner ◽  
Ljubava Zorova ◽  
Vasily Manskikh ◽  
...  

Neonatal sepsis is one of the major causes of mortality and morbidity in newborns, greatly associated with severe acute kidney injury (AKI) and failure. Handling of newborns with kidney damage can be significantly different compared to adults, and it is necessary to consider the individuality of an organism’s response to systemic inflammation. In this study, we used lipopolysaccharide (LPS)-mediated acute kidney injury model to study mechanisms of kidney cells damage in neonatal and adult rats. We found LPS-associated oxidative stress was more severe in adults compared to neonates, as judged by levels of carbonylated proteins and products of lipids peroxidation. In both models, LPS-mediated septic simulation caused apoptosis of kidney cells, albeit to a different degree. Elevated levels of proliferating cell nuclear antigen (PCNA) in the kidney dropped after LPS administration in neonates but increased in adults. Renal fibrosis, as estimated by smooth muscle actin levels, was significantly higher in adult kidneys, whereas these changes were less profound in LPS-treated neonatal kidneys. We concluded that in LPS-mediated AKI model, renal cells of neonatal rats were more tolerant to oxidative stress and suffered less from long-term pathological consequences, such as fibrosis. In addition, we assume that by some features LPS administration simulates the conditions of accelerated aging.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Qingwen Qian ◽  
Tim D O'Connell

Fibrosis significantly contributes to contractile dysfunction and pathologic ventricular remodeling in heart failure. Recently, we showed for the first time that ω3-polyunsaturated fatty acids (ω-PUFAs) prevent fibrosis and cardiac dysfunction in pressure-overload induced heart failure through inhibition of collagen expression, fibroblast proliferation, and fibroblast-to-myofibroblast transformation. In cultured cardiac fibroblasts, we found that ω3-PUFAs induced eNOS activity to prevent TGFβ1-Smad2/3 pro-fibrotic signaling. Mechanistically, ω3-PUFAs are thought to regulate ion channels or to incorporate into the membrane and alter the properties of lipid-rafts, but how a fatty acid might activate eNOS is unknown. Recently, GPR40 and GPR120 were identified as receptors for long-chain fatty acids (FFARs). Here, we examined GPR120 regulation of cardiac fibrosis. Among the FFARs, GPR40, 41, 43, 84, and 120, GPR120 mRNA was expressed at highest level in whole heart. Furthermore, we detected GPR120 expression in isolated cardiac myocytes and fibroblasts, as well as NIH3T3 mouse embryonic fibroblasts. To determine if activation of GPR120 was sufficient to prevent fibrosis, we tested the ability of the GPR120 agonist GW9508 to prevent TGFβ1-induced fibrosis in both NIH3T3 cells and primary cultures of cardiac fibroblasts. In both NIH3T3 cells and primary cardiac fibroblasts, TGFβ1 (1 ng/ml) induced a pro-fibrotic response indicated by increased fibroblast proliferation, α-smooth muscle actin expression, and collagen I expression. In both cell types, pre-treatment with GW9508 significantly inhibited TGFβ1-induced proliferation (63% in NIH 3T3 cells and 52% in cardiac fibroblasts, respectively), α-smooth muscle actin expression (78% in NIH 3T3 cells, 90% in cardiac fibroblasts), and collagen I expression. In summary, our results demonstrate for the first time, that GPR120 signaling in the heart prevents fibrosis.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 614 ◽  
Author(s):  
Pablo Parra-Flores ◽  
Jaime A Riquelme ◽  
Paula Valenzuela-Bustamante ◽  
Sebastian Leiva-Navarrete ◽  
Raúl Vivar ◽  
...  

Acute myocardial infarction is one of the leading causes of death worldwide and thus, an extensively studied disease. Nonetheless, the effects of ischemia/reperfusion injury elicited by oxidative stress on cardiac fibroblast function associated with tissue repair are not completely understood. Ascorbic acid, deferoxamine, and N-acetylcysteine (A/D/N) are antioxidants with known cardioprotective effects, but the potential beneficial effects of combining these antioxidants in the tissue repair properties of cardiac fibroblasts remain unknown. Thus, the aim of this study was to evaluate whether the pharmacological association of these antioxidants, at low concentrations, could confer protection to cardiac fibroblasts against simulated ischemia/reperfusion injury. To test this, neonatal rat cardiac fibroblasts were subjected to simulated ischemia/reperfusion in the presence or absence of A/D/N treatment added at the beginning of simulated reperfusion. Cell viability was assessed using trypan blue staining, and intracellular reactive oxygen species (ROS) production was assessed using a 2′,7′-dichlorofluorescin diacetate probe. Cell death was measured by flow cytometry using propidium iodide. Cell signaling mechanisms, differentiation into myofibroblasts and pro-collagen I production were determined by Western blot, whereas migration was evaluated using the wound healing assay. Our results show that A/D/N association using a low concentration of each antioxidant increased cardiac fibroblast viability, but that their separate administration did not provide protection. In addition, A/D/N association attenuated oxidative stress triggered by simulated ischemia/reperfusion, induced phosphorylation of pro-survival extracellular-signal-regulated kinases 1/2 (ERK1/2) and PKB (protein kinase B)/Akt, and decreased phosphorylation of the pro-apoptotic proteins p38- mitogen-activated protein kinase (p38-MAPK) and c-Jun-N-terminal kinase (JNK). Moreover, treatment with A/D/N also reduced reperfusion-induced apoptosis, evidenced by a decrease in the sub-G1 population, lower fragmentation of pro-caspases 9 and 3, as well as increased B-cell lymphoma-extra large protein (Bcl-xL)/Bcl-2-associated X protein (Bax) ratio. Furthermore, simulated ischemia/reperfusion abolished serum-induced migration, TGF-β1 (transforming growth factor beta 1)-mediated cardiac fibroblast-to-cardiac myofibroblast differentiation, and angiotensin II-induced pro-collagen I synthesis, but these effects were prevented by treatment with A/D/N. In conclusion, this is the first study where a pharmacological combination of A/D/N, at low concentrations, protected cardiac fibroblast viability and function after simulated ischemia/reperfusion, and thereby represents a novel therapeutic approach for cardioprotection.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoyu Gu ◽  
Tingting Fang ◽  
Pinfang Kang ◽  
Junfeng Hu ◽  
Ying Yu ◽  
...  

Our study aimed firstly to observe whether ALDH2 was expressed in neonate rat cardiac fibroblasts, then to investigate the effect of activation of ALDH2 on oxidative stress, apoptosis, and fibrosis when cardiac fibroblasts were subjected to high glucose intervention. Cultured cardiac fibroblasts were randomly divided into normal (NG), NG + Alda-1, high glucose (HG), HG + Alda-1, HG + Alda-1 + daidzin, HG + daidzin, and hypertonic groups. Double-label immunofluorescence staining, RT-PCR, and Western blot revealed ALDH2 was expressed in cardiac fibroblasts. Compared with NG, ALDH2 activity and protein expression were reduced, and cardiac fibroblast proliferation, ROS releasing, 4-HNE protein expression, collagen type I and III at mRNA levels, and the apoptosis rate were increased in HG group. While in HG + Alda-1 group, with the increases of ALDH2 activity and protein expression, the cardiac fibroblast proliferation and ROS releasing were decreased, and 4-HNE protein expression, collagen type I and III at mRNA levels, and apoptosis rate were reduced compared with HG group. When treated with daidzin in HG + Alda-1 group, the protective effects were inhibited. Our findings suggested that ALDH2 is expressed in neonate rat cardiac fibroblasts; activation of ALDH2 decreases the HG-induced apoptosis and fibrosis through inhibition of oxidative stress.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
José Sérgio Possomato-Vieira ◽  
Victor Hugo Gonçalves-Rizzi ◽  
Regina Aparecida do Nascimento ◽  
Rodrigo Roldão Wandekin ◽  
Mayara Caldeira-Dias ◽  
...  

Lead- (Pb-) induced hypertension has been shown in humans and experimental animals and cardiovascular effects of hydrogen sulfide (H2S) have been reported previously. However, no studies examined involvement of H2S in Pb-induced hypertension. We found increases in diastolic blood pressure and mean blood pressure in Pb-intoxicated humans followed by diminished H2S plasmatic levels. In order to expand our findings, male Wistar rats were divided into four groups: Saline, Pb, NaHS, and Pb + NaHS. Pb-intoxicated animals received intraperitoneally (i.p.) 1st dose of 8 μg/100 g of Pb acetate and subsequent doses of 0.1 μg/100 g for seven days and sodium hydrosulfide- (NaHS-) treated animals received i.p. NaHS injections (50 μmol/kg/twice daily) for seven days. NaHS treatment blunted increases in systolic blood pressure, increased H2S plasmatic levels, and diminished whole-blood lead levels. Treatment with NaHS in Pb-induced hypertension seems to induce a protective role in rat aorta which is dependent on endothelium and seems to promote non-NO-mediated relaxation. Pb-intoxication increased oxidative stress in rats, while treatment with NaHS blunted increases in plasmatic MDA levels and increased antioxidant status of plasma. Therefore, H2S pathway may be involved in Pb-induced hypertension and treatment with NaHS exerts antihypertensive effect, promotes non-NO-mediated relaxation, and decreases oxidative stress in rats with Pb-induced hypertension.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Jing Wang ◽  
Ya Li ◽  
Peng Zhao ◽  
Yange Tian ◽  
Xuefang Liu ◽  
...  

Particulate matter with an aerodynamic diameter equal or less than 2.5 micrometers (PM2.5) is associated with the development of chronic obstructive pulmonary disease (COPD). The mechanisms by which PM2.5 accelerates disease progression in COPD are poorly understood. In this study, we aimed to investigate the effect of PM2.5 on lung injury in rats with hallmark features of COPD. Cardinal features of human COPD were induced in a rat model by repeated cigarette smoke inhalation and bacterial infection for 8 weeks. Then, from week 9 to week 16, some of these rats with COPD were subjected to real-time concentrated atmospheric PM2.5. Lung function, pathology, inflammatory cytokines, oxidative stress, and mucus and collagen production were measured. As expected, the COPD rats had developed emphysema, inflammation, and deterioration in lung function. PM2.5 exposure resulted in greater lung function decline and histopathological changes, as reflected by increased Mucin (MUC) 5ac, MUC5b, Collagen I, Collagen III, and the profibrotic cytokine α-smooth muscle-actin (SMA), transforming growth factor- (TGF-) β1 in lung tissues. PM2.5 also aggravated inflammation, increasing neutrophils and eosinophils in bronchoalveolar lavage fluid (BALF) and cytokines including Interleukin- (IL-) 1β, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-4. The likely mechanism is through oxidative stress as antioxidants levels were decreased, whereas oxidants were increased, indicating a detrimental shift in the oxidant-antioxidant balance. Altogether, these results suggest that PM2.5 exposure could promote the development of COPD by impairing lung function and exacerbating pulmonary injury, and the potential mechanisms are related to inflammatory response and oxidative stress.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 610 ◽  
Author(s):  
Beata Olas ◽  
Paulina Brodek ◽  
Bogdan Kontek

The main aim of the study is to examine the effect of sodium hydrosulfide (NaHS), an H2S donor, on the oxidative stress in human plasma in vitro. It also examined the effects of very high concentrations of exogenous hydrogen sulfide on the hemostatic parameters (coagulation and fibrinolytic activity) of human plasma. Plasma was incubated for 5–30 min with different concentrations of NaHS from 0.01 to 10 mM. Following this, lipid peroxidation was measured as a thiobarbituric acid reactive substance (TBARS) concentration and the oxidation of amino acid residues in proteins was measured by determining the amounts of thiol groups and carbonyl groups. Hydrogen peroxide (H2O2) and the hydroxyl radical generating oxidation system (Fe/H2O2) were used as oxidative stress inducers. Hemostatic factors, such as the maximum velocity of clot formation, fibrin lysis half-time, the activated partial thromboplastin time (APTT), thrombin time (TT), and international normalized ratio (INR), were estimated. Changes in lipid peroxidation, carbonyl group formation, and thiol group oxidation were detected at high concentrations of H2S (0.1–10 mM), and these results indicate that NaHS (as the precursor of H2S) may have pro-oxidative effects in human plasma in vitro. Moreover, considering the data presented in this study, we suggest that the oxidative stress stimulated by NaHS (at high concentrations: 1–10 mM) is not involved in changes of the hemostatic activity of plasma.


2020 ◽  
Vol 9 (18) ◽  
Author(s):  
Wenqian Zhang ◽  
Qiaozhu Wang ◽  
Yanjing Feng ◽  
Xuegui Chen ◽  
Lijun Yang ◽  
...  

Background Hypertensive myocardial fibrosis (MF) is characterized by excessive deposition of extracellular matrix and cardiac fibroblast proliferation, which can lead to heart failure, malignant arrhythmia, and sudden death. In recent years, with the deepening of research, microRNAs have been found to have an important role in blood pressure control and maintaining normal ventricular structure and function. Methods and Results In this study, we first documented the downregulation of microRNA‐26a (miR‐26a) in the plasma and myocardium of spontaneously hypertensive rats; more importantly, miR‐26a–deficient mice showed MF, whereas overexpression of miR‐26a significantly prevented elevated blood pressure and inhibited MF in vivo and angiotensin II‐induced fibrogenesis in cardiac fibroblasts by directly targeting connective tissue growth factor and Smad4. miR‐26a inhibited cardiac fibroblast proliferation by the enhancer of zeste homolog 2/p21 pathway. Conclusions Our study identified a novel role for miR‐26a in blood pressure control and hypertensive MF and provides a possible treatment strategy for miR‐26a to alleviate and reverse hypertensive MF.


Sign in / Sign up

Export Citation Format

Share Document