scholarly journals Role of Oxytocin and Vasopressin in Neuropsychiatric Disorders: Therapeutic Potential of Agonists and Antagonists

2021 ◽  
Vol 22 (21) ◽  
pp. 12077
Author(s):  
Valeska Cid-Jofré ◽  
Macarena Moreno ◽  
Miguel Reyes-Parada ◽  
Georgina M. Renard

Oxytocin (OT) and vasopressin (AVP) are hypothalamic neuropeptides classically associated with their regulatory role in reproduction, water homeostasis, and social behaviors. Interestingly, this role has expanded in recent years and has positioned these neuropeptides as therapeutic targets for various neuropsychiatric diseases such as autism, addiction, schizophrenia, depression, and anxiety disorders. Due to the chemical-physical characteristics of these neuropeptides including short half-life, poor blood-brain barrier penetration, promiscuity for AVP and OT receptors (AVP-R, OT-R), novel ligands have been developed in recent decades. This review summarizes the role of OT and AVP in neuropsychiatric conditions, as well as the findings of different OT-R and AVP-R agonists and antagonists, used both at the preclinical and clinical level. Furthermore, we discuss their possible therapeutic potential for central nervous system (CNS) disorders.

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1567
Author(s):  
Sangiliyandi Gurunathan ◽  
Min-Hee Kang ◽  
Jin-Hoi Kim

Melatonin (MLT) is a powerful chronobiotic hormone that controls a multitude of circadian rhythms at several levels and, in recent times, has garnered considerable attention both from academia and industry. In several studies, MLT has been discussed as a potent neuroprotectant, anti-apoptotic, anti-inflammatory, and antioxidative agent with no serious undesired side effects. These characteristics raise hopes that it could be used in humans for central nervous system (CNS)-related disorders. MLT is mainly secreted in the mammalian pineal gland during the dark phase, and it is associated with circadian rhythms. However, the production of MLT is not only restricted to the pineal gland; it also occurs in the retina, Harderian glands, gut, ovary, testes, bone marrow, and lens. Although most studies are limited to investigating the role of MLT in the CNS and related disorders, we explored a considerable amount of the existing literature. The objectives of this comprehensive review were to evaluate the impact of MLT on the CNS from the published literature, specifically to address the biological functions and potential mechanism of action of MLT in the CNS. We document the effectiveness of MLT in various animal models of brain injury and its curative effects in humans. Furthermore, this review discusses the synthesis, biology, function, and role of MLT in brain damage, and as a neuroprotective, antioxidative, anti-inflammatory, and anticancer agent through a collection of experimental evidence. Finally, it focuses on the effect of MLT on several neurological diseases, particularly CNS-related injuries.


2010 ◽  
Vol 21 (5-6) ◽  
pp. 394-408 ◽  
Author(s):  
Cláudia P. Figueiredo ◽  
Fabrício A. Pamplona ◽  
Tânia L. Mazzuco ◽  
Aderbal S. Aguiar ◽  
Roger Walz ◽  
...  

2018 ◽  
Vol 13 (3-4) ◽  
pp. 70-75
Author(s):  
M.V. Khaitovych

Relevance. Anti-depressant effects of NMDA receptor antagonists have been proven, a close association between low levels of magnesium in the blood and depression. Therefore, in recent years, antidepressant properties of magnesium are actively studied in animal experiments. Objective: To review modern literary sources about the role of magnesium deficiency in the pathogenesis of diseases of the central nervous system. Materials and methods. Searching for a depth of 12 years at Scopus, Google Scholar. Results. The results of experimental and clinical researches pointed out on association between low level of magnesium in hair, liquor, brain with higher risk of development dementia, depression and anxiety. An additional supplementation with magnesium in patients associates with decreasing risk of ischemic stroke and dementia, in pregnancy – provides neuroprotection of fetus, in case of depression increases effectiveness of antidepressants, in brain injury associates with faster recovery of cognitive functions, in migraines - with decreasing in the frequency of attacks and improvement of the quality patients’ lives, in case of neuroleptic therapy - with the possibility of delayed appearance or absence of manifestations of drug parkinsonism. These changes are explained by antagonistic effects of magnesium on glutamate receptors, decreasing oxidative stress intensity as well as neural cell  apoptosis. Conclusion. Magnesium plays an important neuroprotective role.


2014 ◽  
Vol 34 (3) ◽  
pp. 369-375 ◽  
Author(s):  
Juan Pablo de Rivero Vaccari ◽  
W Dalton Dietrich ◽  
Robert W Keane

The inflammasome is an intracellular multiprotein complex involved in the activation of caspase-1 and the processing of the proinflammatory cytokines interleukin-1 β (IL-1 β) and IL-18. The inflammasome in the central nervous system (CNS) is involved in the generation of an innate immune inflammatory response through IL-1 cytokine release and in cell death through the process of pyroptosis. In this review, we consider the different types of inflammasomes (NLRP1, NLRP2, NLRP3, and AIM2) that have been described in CNS cells, namely neurons, astrocytes, and microglia. Importantly, we focus on the role of the inflammasome after brain and spinal cord injury and cover the potential activators of the inflammasome after CNS injury such as adenosine triphosphate and DNA, and the therapeutic potential of targeting the inflammasome to improve outcomes after CNS trauma.


2021 ◽  
Author(s):  
María S. García-Gutiérrez ◽  
Francisco Navarrete ◽  
Ani Gasparyan ◽  
Jorge Manzanares

Since the identification and cloning of the cannabinoid receptor 2 (CB2R), several studies focused on the characterization of its physiological and pathological role. Initially, CB2R was considered as the peripheral cannabinoid receptor due to its detection in the rat spleen and leukocyte subpopulation in humans. Later, CB2R was identified in different brain regions significantly modifying the landscape and pointing out its role in a wide variety of central physiological functions and pathological conditions. Additional research also detected the expression of CB2R in neurons, microglia, and astroglia in different brain regions. Indeed, the findings collected to date support a significant function of CB2R in anxiety, depression, schizophrenia, and additional neuropsychiatric disorders. This review gathers the most relevant literature regarding new advances about the role of CB2R in a variety of neuropsychiatric conditions, with special emphasis on its potential as a new therapeutic target for the treatment of different psychiatric disorders.


2018 ◽  
Vol 25 (17) ◽  
pp. 1954-1967 ◽  
Author(s):  
Marinos Kosmopoulos ◽  
Anthos Christofides ◽  
Dimitrios Drekolias ◽  
Phaedon D. Zavras ◽  
Antonios N. Gargalionis ◽  
...  

Background: Glioma is a heterogeneous, highly complicated central nervous system (CNS) tumor with uncertain mechanism of initiation and progression, resulting in an unfavorable outcome. An extended network of cytokines is recognized as a major regulator of glioma pathogenesis, either promoting or inhibiting glioma progression based on their type and specificity. Interleukin-8 (IL-8) has been revealed as a critical regulator of CNS function and development with participation in many CNS disorders including gliomas. Objective: The aim of the present review is to address the role of IL-8 in glioma pathogenesis focusing on the implicated molecular pathways as well as on its potential targeting for glioma therapy. Methods and Results: PubMed-Medline, SCOPUS, and Google Scholar databases were searched for pre-clinical and clinical studies related to IL-8 implication in gliomagenesis and IL-8 targeting strategies for gliomas. Literature data indicate that IL-8 participates in glioma angiogenesis and cell migration and it can serve as a potential biomarker, for early diagnosis, follow-up and response to therapy. Conclusion: Several promising approaches that target directly or indirectly IL-8 effects in gliomas are currently in progress while more-in-depth studies are needed to validate its biomarker role and elucidate the underlying molecular mechanisms.


CNS Spectrums ◽  
1998 ◽  
Vol 3 (8) ◽  
pp. 50-58 ◽  
Author(s):  
Hala Sarhan ◽  
Gilles Fillion

AbstractThe endogenous peptide 5-HT–moduline has been characterized as a novel neuropeptide that binds to 5-HT1B receptors in the brain areas in which it is released. By inducing structural changes in these receptors, this peptide prevents 5-HT binding, thereby desensitizing the receptors and inhibiting serotonergic function. This novel mechanism may help to explain differential effects of the serotonergic system in varying areas of the brain that are innervated by the same or few neurons. In addition, dysfunction or disruption of the 5-HT–moduline system may contribute to psychiatric disorders such as depression and anxiety, and may have important implications for the development of new therapeutic agents for these disorders.


2019 ◽  
Vol 42 ◽  
Author(s):  
Kevin B. Clark

Abstract Some neurotropic enteroviruses hijack Trojan horse/raft commensal gut bacteria to render devastating biomimicking cryptic attacks on human/animal hosts. Such virus-microbe interactions manipulate hosts’ gut-brain axes with accompanying infection-cycle-optimizing central nervous system (CNS) disturbances, including severe neurodevelopmental, neuromotor, and neuropsychiatric conditions. Co-opted bacteria thus indirectly influence host health, development, behavior, and mind as possible “fair-weather-friend” symbionts, switching from commensal to context-dependent pathogen-like strategies benefiting gut-bacteria fitness.


Sign in / Sign up

Export Citation Format

Share Document