scholarly journals Resveratrol-Induced Signal Transduction in Wound Healing

2021 ◽  
Vol 22 (23) ◽  
pp. 12614
Author(s):  
Anna-Lisa Pignet ◽  
Marlies Schellnegger ◽  
Andrzej Hecker ◽  
Michael Kohlhauser ◽  
Petra Kotzbeck ◽  
...  

Resveratrol is a well-known polyphenol that harbors various health benefits. Besides its well-known anti-oxidative potential, resveratrol exerts anti-inflammatory, pro-angiogenic, and cell-protective effects. It seems to be a promising adjuvant for various medical indications, such as cancer, vascular, and neurodegenerative diseases. Additionally, resveratrol was shown to display beneficial effects on the human skin. The polyphenol is discussed to be a feasible treatment approach to accelerate wound healing and prevent the development of chronic wounds without the drawback of systemic side effects. Despite resveratrol’s increasing popularity, its molecular mechanisms of action are still poorly understood. To take full advantage of resveratrol’s therapeutic potential, a profound knowledge of its interactions with its targets is needed. Therefore, this review highlights the resveratrol-induced molecular pathways with particular focus on the most relevant variables in wound healing, namely inflammation, oxidative stress, autophagy, collagen proliferation and angiogenesis.

Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 4
Author(s):  
Alma Akhmetova ◽  
Andrea Heinz

With the growth of the aging population worldwide, chronic wounds represent an increasing burden to healthcare systems. Wound healing is complex and not only affected by the patient’s physiological conditions, but also by bacterial infections and inflammation, which delay wound closure and re-epithelialization. In recent years, there has been a growing interest for electrospun polymeric wound dressings with fiber diameters in the nano- and micrometer range. Such wound dressings display a number of properties, which support and accelerate wound healing. For instance, they provide physical and mechanical protection, exhibit a high surface area, allow gas exchange, are cytocompatible and biodegradable, resemble the structure of the native extracellular matrix, and deliver antibacterial agents locally into the wound. This review paper gives an overview on cytocompatible and biodegradable fibrous wound dressings obtained by electrospinning proteins and peptides of animal and plant origin in recent years. Focus is placed on the requirements for the fabrication of such drug delivery systems by electrospinning as well as their wound healing properties and therapeutic potential. Moreover, the incorporation of antimicrobial agents into the fibers or their attachment onto the fiber surface as well as their antimicrobial activity are discussed.


2021 ◽  
Vol 18 ◽  
Author(s):  
Xinchi Feng ◽  
Jinsong Hao

: Chronic wounds remain a significant public problem and the development of wound treatments has been a research focus for the past few decades. Despite advances in the products derived from endogenous substances involved in a wound healing process (e.g. growth factors, stem cells, and extracellular matrix), effective and safe wound therapeutics are still limited. There is an unmet need to develop new therapeutics. Various new pathways and targets have been identified and could become a molecular target in designing novel wound agents. Importantly, many existing drugs that target these newly identified pathways could be repositioned for wound therapy, which will facilitate fast translation of research findings to clinical applications. This review discusses the newly identified pathways/targets and their potential uses in the development of wound therapeutics. Some herbs and amphibian skins have been traditionally used for wound repairs and their active ingredients have been found to act in these new pathways. Hence, screening these natural products for novel wound therapeutics remains a viable approach. The outcomes of wound care using natural wound therapeutics could be improved if we can better understand their cellular and molecular mechanisms and fabricate them in appropriate formulations, such as using novel wound dressings and nano-engineered materials. Therefore, we also provide an update on the advances in the wound therapeutics from natural sources. Overall, this review offers new insights into novel wound therapeutics.


Author(s):  
Parinaz Zivarpour ◽  
Željko Reiner ◽  
Jamal Hallajzadeh ◽  
Liaosadat Mirsafaei

: Cardiovascular diseases are some of the major causes of morbidity and mortality in developed or developing countries but in developed countries as well. Cardiac fibrosis is one of the most often pathological changes of heart tissues. It occurs as a result of extracellular matrix proteins accumulation at myocardia. Cardiac fibrosis results in impaired cardiac systolic and diastolic functions and is associated with other effects. Therapies with medicines have not been sufficiently successful in treating chronic diseases such as CVD. Therefore, the interest for therapeutic potential of natural compounds and medicinal plants has increased. Plants such as grapes, berries and peanuts contain a polyphenolic compound called "resveratrol" which has been reported to have various therapeutic properties for a variety of diseases. Studies on laboratory models that show that resveratrol has beneficial effects on cardiovascular diseases including myocardial infarction, high blood pressure cardiomyopathy, thrombosis, cardiac fibrosis, and atherosclerosis. In vitro animal models using resveratrol indicated protective effects on the heart by neutralizing reactive oxygen species, preventing inflammation, increasing neoangiogenesis, dilating blood vessels, suppressing apoptosis and delaying atherosclerosis. In this review, we are presenting experimental and clinical results of studies concerning resveratrol effects on cardiac fibrosis as a CVD outcome in humans.


2021 ◽  
Vol 22 (22) ◽  
pp. 12221
Author(s):  
Werner Hoffmann

Human saliva is a complex body fluid with more than 3000 different identified proteins. Besides rheological and lubricating properties, saliva supports wound healing and acts as an antimicrobial barrier. TFF peptides are secreted from the mucous acini of the major and minor salivary glands and are typical constituents of normal saliva; TFF3 being the predominant peptide compared with TFF1 and TFF2. Only TFF3 is easily detectable by Western blotting. It occurs in two forms, a disulfide-linked homodimer (Mr: 13k) and a high-molecular-mass heterodimer with IgG Fc binding protein (FCGBP). TFF peptides are secretory lectins known for their protective effects in mucous epithelia; the TFF3 dimer probably has wound-healing properties due to its weak motogenic effect. There are multiple indications that FCGBP and TFF3-FCGBP play a key role in the innate immune defense of mucous epithelia. In addition, homodimeric TFF3 interacts in vitro with the salivary agglutinin DMBT1gp340. Here, the protective roles of TFF peptides, FCGBP, and DMBT1gp340 in saliva are discussed. TFF peptides are also used to reduce radiotherapy- or chemotherapy-induced oral mucositis. Thus, TFF peptides, FCGBP, and DMBT1gp340 are promising candidates for better formulations of artificial saliva, particularly improving wound healing and antimicrobial effects even in the esophagus.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 702
Author(s):  
Seyyed-Mojtaba Mousavi ◽  
Zohre Mousavi Nejad ◽  
Seyyed Alireza Hashemi ◽  
Marjan Salari ◽  
Ahmad Gholami ◽  
...  

Despite the advances that have been achieved in developing wound dressings to date, wound healing still remains a challenge in the healthcare system. None of the wound dressings currently used clinically can mimic all the properties of normal and healthy skin. Electrospinning has gained remarkable attention in wound healing applications because of its excellent ability to form nanostructures similar to natural extracellular matrix (ECM). Electrospun dressing accelerates the wound healing process by transferring drugs or active agents to the wound site sooner. This review provides a concise overview of the recent developments in bioactive electrospun dressings, which are effective in treating acute and chronic wounds and can successfully heal the wound. We also discuss bioactive agents used to incorporate electrospun wound dressings to improve their therapeutic potential in wound healing. In addition, here we present commercial dressings loaded with bioactive agents with a comparison between their features and capabilities. Furthermore, we discuss challenges and promises and offer suggestions for future research on bioactive agent-loaded nanofiber membranes to guide future researchers in designing more effective dressing for wound healing and skin regeneration.


Author(s):  
Ghazal Shabestani Monfared ◽  
Peter Ertl ◽  
Mario Rothbauer

Cutaneous wound healing is a complex multi-stage process involving direct and indirect cell communication events with the aim of efficiently restoring the barrier function of the skin. One key aspect in cutaneous wound healing is associated with cell movement and migration into the physically, chemically and biologically injured area resulting in wound closure. Understanding the conditions under which cell migration is impaired and elucidating the cellular and molecular mechanisms that improve healing dynamics is therefore crucial in devising novel therapeutic strategies to elevate patient suffering, reduce scaring and eliminate chronic wounds. Following the global trend towards automation, miniaturization and integration of cell-based assays into microphysiological systems, conventional wound healing assays such as the scratch assay or cell exclusion assay have recently been translated and improved using microfluidics and lab-on-a-chip technologies. These miniaturized cell analysis systems allow precise spatial and temporal control over a range of dynamic microenvironmental factors including shear stress, biochemical and oxygen gradients to create more reliable in vitro models that resemble the in vivo microenvironment of a wound more closely on a molecular, cellular, and tissue level. The current review provides (a) an overview on the main molecular and cellular processes that take place during wound healing, (b) a brief introduction into conventional in vitro wound healing assays, and (c) a perspective on future cutaneous and vascular wound healing research using microfluidic technology.


Author(s):  
Milad Ashrafizadeh ◽  
Zahra Ahmadi ◽  
Habib Yaribeygi ◽  
Thozhukat Sathyapalan ◽  
Amirhossein Sahebkar

: Astaxanthin (AST) is a naturally occurring compound isolated from various sources such as fungi, plants, salmon, and crab. However, Haematococcus Pluvialis, a green alga, is the primary source of this beta carotenoid compound. AST has several favourable biological and pharmacological activities such as antioxidant, anti-inflammatory, anti-tumor, anti-diabetes, hepatoprotective and neuroprotective. Nevertheless, the exact molecular mechanisms of these protective effects of AST are unclear yet. The Nrf2 signaling pathway is one of the critical candidate signaling pathways that may be involved in these beneficial effects of AST. This signaling pathway is responsible for maintaining the redox balance in the physiologic state. Upon nuclear translocation, Nrf2 signaling activates antioxidant enzymes to reduce oxidative stress and protect cells against damage. In the current study, we have reviewed the effects of AST on the Nrf2 signaling pathway, which could potentially be developed as a novel therapeutic approach for the management of various diseases.


2019 ◽  
Vol 40 (30) ◽  
pp. 2523-2533 ◽  
Author(s):  
Matthias S Leisegang ◽  
Sofia-Iris Bibli ◽  
Stefan Günther ◽  
Beatrice Pflüger-Müller ◽  
James A Oo ◽  
...  

Abstract Aims To assess the functional relevance and therapeutic potential of the pro-angiogenic long non-coding RNA MANTIS in vascular disease development. Methods and results RNA sequencing, CRISPR activation, overexpression, and RNAi demonstrated that MANTIS, especially its Alu-element, limits endothelial ICAM-1 expression in different types of endothelial cells. Loss of MANTIS increased endothelial monocyte adhesion in an ICAM-1-dependent manner. MANTIS reduced the binding of the SWI/SNF chromatin remodelling factor BRG1 at the ICAM-1 promoter. The expression of MANTIS was induced by laminar flow and HMG-CoA-reductase inhibitors (statins) through mechanisms involving epigenetic rearrangements and the transcription factors KLF2 and KLF4. Mutation of the KLF binding motifs in the MANTIS promoter blocked the flow-induced MANTIS expression. Importantly, the expression of MANTIS in human carotid artery endarterectomy material was lower compared with healthy vessels and this effect was prevented by statin therapy. Interestingly, the protective effects of statins were mediated in part through MANTIS, which was required to facilitate the atorvastatin-induced changes in endothelial gene expression. Moreover, the beneficial endothelial effects of statins in culture models (spheroid outgrowth, proliferation, telomerase activity, and vascular organ culture) were lost upon knockdown of MANTIS. Conclusion MANTIS is tightly regulated by the transcription factors KLF2 and KLF4 and limits the ICAM-1 mediated monocyte adhesion to endothelial cells and thus potentially atherosclerosis development in humans. The beneficial effects of statin treatment and laminar flow are dependent on MANTIS.


2018 ◽  
Vol 19 (10) ◽  
pp. 3270 ◽  
Author(s):  
Yasuyoshi Miyata ◽  
Hideki Sakai

Royal jelly (RJ) is a glandular secretion produced by worker honeybees and is a special food for the queen honeybee. It results in a significant prolongation of the lifespan of the queen honeybee compared with the worker honeybees through anti-inflammatory, anti-oxidant and anti-microbial activities. Consequently, RJ is used as cosmetic and dietary supplement throughout the world. In addition, in vitro studies and animal experiments have demonstrated that RJ inhibits cell proliferation and stimulates apoptosis in various types of malignant cells and affects the production of various chemokines, anti-oxidants and growth factors and the expression of cancer-related molecules in patients with malignancies, especially in patients treated with anti-cancer agents. Therefore, RJ is thought to exert anti-cancer effects on tumor growth and exhibit protective functions against drug-induced toxicities. RJ has also been demonstrated to be useful for suppression of adverse events, the maintenance of the quality of life during treatment and the improvement of prognosis in animal models and patients with malignancies. To understand the mechanisms of the beneficial effects of RJ, knowledge of the changes induced at the molecular level by RJ with respect to cell survival, inflammation, oxidative stress and other cancer-related factors is essential. In addition, the effects of combination therapies of RJ and other anti-cancer agents or natural compounds are important to determine the future direction of RJ-based treatment strategies. Therefore, in this review, we have covered the following five issues: (1) the anti-cancer effects of RJ and its main component, 10-hydroxy-2-decenoic acid; (2) the protective effects of RJ against anti-cancer agent-induced toxicities; (3) the molecular mechanisms of such beneficial effects of RJ; (4) the safety and toxicity of RJ; and (5) the future directions of RJ-based treatment strategies, with a discussion on the limitations of the study of the biological activities of RJ.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 429
Author(s):  
Ágota Pető ◽  
Dóra Kósa ◽  
Pálma Fehér ◽  
Zoltán Ujhelyi ◽  
Dávid Sinka ◽  
...  

BGP-15 is a new insulin sensitizer drug candidate, which was developed by Hungarian researchers. In recent years, numerous research groups have studied its beneficial effects. It is effective in the treatment of insulin resistance and it has protective effects in Duchenne muscular dystrophy, diastolic dysfunction, tachycardia, heart failure, and atrial fibrillation, and it can alleviate cardiotoxicity. BGP-15 exhibits chemoprotective properties in different cytostatic therapies, and has also proven to be photoprotective. It can additionally have advantageous effects in mitochondrial-stress-related diseases. Although the precise mechanism of the effect is still unknown to us, we know that the molecule is a PARP inhibitor, chaperone co-inducer, reduces ROS production, and is able to remodel the organization of cholesterol-rich membrane domains. In the following review, our aim was to summarize the investigated molecular mechanisms and pharmacological effects of this potential API. The main objective was to present the wide pharmacological potentials of this chemical agent.


Sign in / Sign up

Export Citation Format

Share Document