scholarly journals Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression

2021 ◽  
Vol 23 (1) ◽  
pp. 146
Author(s):  
Stephan Niland ◽  
Andrea Ximena Riscanevo ◽  
Johannes Andreas Eble

Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell–matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.

2019 ◽  
Vol 9 (22) ◽  
pp. 4784
Author(s):  
Vietsch ◽  
Peran ◽  
Suker ◽  
van den Bosch ◽  
Sijde ◽  
...  

Clinical follow-up aided by changes in the expression of circulating microRNAs (miRs) may improve prognostication of pancreatic ductal adenocarcinoma (PDAC) patients. Changes in 179 circulating miRs due to cancer progression in the transgenic KrasG12D/+; Trp53R172H/+; P48-Cre (KPC) animal model of PDAC were analyzed for serum miRs that are altered in metastatic disease. In addition, expression levels of 250 miRs were profiled before and after pancreaticoduodenectomy in the serum of two patients with resectable PDAC with different progression free survival (PFS) and analyzed for changes indicative of PDAC recurrence after resection. Three miRs that were upregulated ≥3-fold in progressive PDAC in both mice and patients were selected for validation in 26 additional PDAC patients before and after resection. We found that high serum miR-125b-5p and miR-99a-5p levels after resection are significantly associated with shorter PFS (HR 1.34 and HR 1.73 respectively). In situ hybridization for miR detection in the paired resected human PDAC tissues showed that miR-125b-5p and miR-99a-5p are highly expressed in inflammatory cells in the tumor stroma, located in clusters of CD79A expressing cells of the B-lymphocyte lineage. In conclusion, we found that circulating miR-125b-5p and miR-99a-5p are potential immune-cell related prognostic biomarkers in PDAC patients after surgery.


1993 ◽  
Vol 4 (2) ◽  
pp. 197-250 ◽  
Author(s):  
H. Birkedal-Hansen ◽  
W.G.I. Moore ◽  
M.K. Bodden ◽  
L.J. Windsor ◽  
B. Birkedal-Hansen ◽  
...  

Matrix metalloproteinases (MMPs) are a family of nine or more highly homologous Zn++endopeptidases that collectively cleave most if not all of the constituents of the extracellular matrix. The present review discusses in detail the primary structures and the overlapping yet distinct substrate specificities of MMPs as well as the mode of activation of the unique MMP precursors. The regulation of MMP activity at the transcriptional level and at the extracellular level (precursor activation, inhibition of activated, mature enzymes) is also discussed. A final segment of the review details the current knowledge of the involvement of MMP in specific developmental or pathological conditions, including human periodontal diseases.


1993 ◽  
Vol 7 (15) ◽  
pp. 1434-1441 ◽  
Author(s):  
William G. Stetler‐Stevenson ◽  
Lance A. Liotta ◽  
David E. Kleiner

2015 ◽  
Vol 4 (1) ◽  
pp. 53-57
Author(s):  
Regina TC Tandelilin

ABSTRACT Matrix metalloproteinases (MMPs) are an important family of zincdependent endopeptidases that mediate the extracellular matrix (ECM) degradation. The major component of the extracellular matrix, collagen, is catabolized. These enzymes have been implicated in oral pathologic processes, such as periodontal tissue destruction, root caries, tumor invasion, and temporomandibular joint disorders. The aim of this paper was to review of some general aspects of matrix metalloproteinases and discuss the role of these enzymes in normal physiology and pathology with emphasis on the oral environment. This process is important in a number of aspects of dentistry since matrix is constantly turning over. Although the members of the MMP family matrix possess different substrate specificities, they all possess similar structural and functional features and demonstrate similar mechanisms of proteolysis. The catalytic of the MMPs is regulated at multiple levels including transcription, secretion, activation and inhibition. The growth and repair of connective tissues is a delicately balanced process of ECM removal and replacement with significant control by primary MMPs and their natural inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Dentists have a need to understand matrix turnover in the periodontal ligament and adjacent structures, embryology and development. How to cite this article Tandelilin RTC, Saini R. Dynamics of Matrix Metalloproteinases in the Oral Environment. Int J Experiment Dent Sci 2015;4(1):53-57.


2013 ◽  
Vol 59 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Nor Eddine Sounni ◽  
Agnès Noel

BACKGROUND With the emergence of the tumor microenvironment as an essential ingredient of cancer malignancy, therapies targeting the host compartment of tumors have begun to be designed and applied in the clinic. CONTENT The malignant features of cancer cells cannot be manifested without an important interplay between cancer cells and their local environment. The tumor infiltrate composed of immune cells, angiogenic vascular cells, lymphatic endothelial cells, and cancer-associated fibroblastic cells contributes actively to cancer progression. The ability to change these surroundings is an important property by which tumor cells are able to acquire some of the hallmark functions necessary for tumor growth and metastatic dissemination. Thus in the clinical setting the targeting of the tumor microenvironment to encapsulate or destroy cancer cells in their local environment has become mandatory. The variety of stromal cells, the complexity of the molecular components of the tumor stroma, and the similarity with normal tissue present huge challenges for therapies targeting the tumor microenvironment. These issues and their interplay are addressed in this review. After a decade of intensive clinical trials targeting cellular components of the tumor microenvironment, more recent investigations have shed light on the important role in cancer progression played by the noncellular stromal compartment composed of the extracellular matrix. SUMMARY A better understanding of how the tumor environment affects cancer progression should provide new targets for the isolation and destruction of cancer cells via interference with the complex crosstalk established between cancer cells, host cells, and their surrounding extracellular matrix.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 274 ◽  
Author(s):  
Manoj Kumar Jena ◽  
Jagadeesh Janjanam

Evidence is increasing on the crucial role of the extracellular matrix (ECM) in breast cancer progression, invasion and metastasis with almost all mortality cases owing to metastasis. The epithelial-mesenchymal transition is the first signal of metastasis involving different transcription factors such as Snail, TWIST, and ZEB1. ECM remodeling is a major event promoting cancer invasion and metastasis; where matrix metalloproteinases (MMPs) such as MMP-2, -9, -11, and -14 play vital roles degrading the matrix proteins for cancer spread. The β-D mannuronic acid (MMP inhibitor) has anti-metastatic properties through inhibition of MMP-2, and -9 and could be a potential therapeutic agent. Besides the MMPs, the enzymes such as LOXL2, LOXL4, procollagen lysyl hydroxylase-2, and heparanase also regulate breast cancer progression. The important ECM proteins like integrins (b1-, b5-, and b6- integrins), ECM1 protein, and Hic-5 protein are also actively involved in breast cancer development. The stromal cells such as tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and adipocytes also contribute in tumor development through different processes. The TAMs become proangiogenic through secretion of VEGF-A and building vessel network for nourishment and invasion of the tumor mass. The latest developments of ECM involvement in breast cancer progression has been discussed in this review and this study will help researchers in designing future work on breast cancer pathogenesis and developing therapy targeted to the ECM components.


2021 ◽  
Vol 11 ◽  
Author(s):  
Claire Deligne ◽  
Kim S. Midwood

Solid cancers such as breast tumors comprise a collection of tumor, stromal and immune cells, embedded within a network of tumor-specific extracellular matrix. This matrix is associated with tumor aggression, treatment failure, chemo- and radio-resistance, poor survival and metastasis. Recent data report an immunomodulatory role for the matrix in cancer, via the creation of niches that control the migration, localization, phenotype and function of tumor-infiltrating immune cells, ultimately contributing to escape of immune surveillance. Macrophages are crucial components of the immune infiltrate in tumors; they are associated with a poor prognosis in breast cancer and contribute to shaping the anti-tumor immune response. We and others have described how matrix molecules commonly upregulated within the tumor stroma, such as tenascin-C, fibronectin and collagen, exert a complex influence over macrophage behavior, for example restricting or enhancing their infiltration into the tumor, and driving their polarization towards or away from a pro-tumoral phenotype, and how in turn macrophages can modify matrix production in the tumor to favor tumor growth and metastasis. Targeting specific domains of matrix molecules to reinstate an efficient anti-tumor immune response, and effectively control tumor growth and spread, is emerging as a promising field offering a new angle for cancer therapy. Here, we review current knowledge on the interactions between tumor-associated macrophages and matrix molecules that occur within the tumor microenvironment of breast cancer, and discuss how these pathways can be targeted for new immunotherapies for hard to treat, desmoplastic tumors.


Author(s):  
Suman Kumar Ray ◽  
Sukhes Mukherjee

: Tissues are progressively molded by bidirectional correspondence between denizen cells and extracellular matrix (ECM) via cell-matrix connections along with ECM remodeling. The composition and association of ECM are spatiotemporally directed to control cell conduct and differentiation; however, dysregulation of ECM dynamics prompts the development of diseases, for example, cancer. Emerging information demonstrates that hypoxia may have decisive roles in metastasis. In addition, the sprawling nature of neoplastic cells and chaotic angiogenesis are increasingly influencing microcirculation as well as altering the concentration of oxygen. In various regions of the tumor microenvironment, hypoxia, an essential player in the multistep phase of cancer metastasis, is necessary. Hypoxia can be turned into an advantage for selective cancer therapy because it is much more severe in tumors than in normal tissues. Cellular matrix gives signaling cues that control cell behavior and organize cells' elements in tissue development and homeostasis. The interplay between intrinsic factors of cancer cells themselves, including their genotype and signaling networks, and extrinsic factors of tumor stroma, for example, ECM and ECM remodeling, together decide the destiny and behavior of tumor cells. Tumor matrix encourages the development, endurance, and invasion of neoplastic and immune cell activities to drive metastasis and debilitate treatment. Incipient evidence recommends essential parts of tumor ECM segments and their remodeling in controlling each progression of the cancer-immunity cycle. Scientists have discovered that tumor matrix dynamics as well as matrix remodeling in perspective to anti-tumor immune reactions are especially important for matrix-based biomarkers recognition and followed by immunotherapy and targeting specific drugs.


2020 ◽  
Vol 68 (12) ◽  
pp. 871-885 ◽  
Author(s):  
Athanasios Papadas ◽  
Garrett Arauz ◽  
Alexander Cicala ◽  
Joshua Wiesner ◽  
Fotis Asimakopoulos

Versican is an extracellular matrix proteoglycan with key roles in multiple facets of cancer development, ranging from proliferative signaling, evasion of growth-suppressor pathways, regulation of cell death, promotion of neoangiogenesis, and tissue invasion and metastasis. Multiple lines of evidence implicate versican and its bioactive proteolytic fragments (matrikines) in the regulation of cancer inflammation and antitumor immune responses. The understanding of the dynamics of versican deposition/accumulation and its proteolytic turnover holds potential for the development of novel immune biomarkers as well as approaches to reset the immune thermostat of tumors, thus promoting efficacy of modern immunotherapies. This article summarizes work from several laboratories, including ours, on the role of this central matrix proteoglycan in tumor progression as well as tumor-immune cell cross-talk:


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 274 ◽  
Author(s):  
Manoj Kumar Jena ◽  
Jagadeesh Janjanam

Evidence is increasing on the crucial role of the extracellular matrix (ECM) in breast cancer progression, invasion and metastasis with almost all mortality cases owing to metastasis. The epithelial-mesenchymal transition is the first signal of metastasis involving different transcription factors such as Snail, TWIST, and ZEB1. ECM remodeling is a major event promoting cancer invasion and metastasis; where matrix metalloproteinases (MMPs) such as MMP-2, -9, -11, and -14 play vital roles degrading the matrix proteins for cancer spread. The β-D mannuronic acid (MMP inhibitor) has anti-metastatic properties through inhibition of MMP-2, and -9 and could be a potential therapeutic agent. Besides the MMPs, the enzymes such as LOXL2, LOXL4, procollagen lysyl hydroxylase-2, and heparanase also regulate breast cancer progression. The important ECM proteins like integrins (b1-, b5-, and b6- integrins), ECM1 protein, and Hic-5 protein are also actively involved in breast cancer development. The stromal cells such as tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and adipocytes also contribute in tumor development through different processes. The TAMs become proangiogenic through secretion of VEGF-A and building vessel network for nourishment and invasion of the tumor mass. The latest developments of ECM involvement in breast cancer progression has been discussed in this review and this study will help researchers in designing future work on breast cancer pathogenesis and developing therapy targeted to the ECM components.


Sign in / Sign up

Export Citation Format

Share Document