scholarly journals Anti-Inflammatory Effect of Wasp Venom in BV-2 Microglial Cells in Comparison with Bee Venom

Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 297
Author(s):  
Hyun Seok Yun ◽  
Jisun Oh ◽  
Ji Sun Lim ◽  
Hyo Jung Kim ◽  
Jong-Sang Kim

The aim of this study was to compare the anti-inflammatory effect of wasp venom (WV) from the yellow-legged hornet (Vespa velutina) with that of bee venom (BV) on BV-2 murine microglial cells. WV was collected from the venom sac, freeze-dried, and used for in vitro examinations. WV and BV were non-toxic to BV-2 cells at concentrations of 160 and 12 µg/mL or lower, respectively. Treatment with WV reduced the secretion of nitric oxide and proinflammatory cytokines, including interleukin-6 and tumor necrosis factor alpha, from BV-2 cells activated by lipopolysaccharide (LPS). Western blot analysis revealed that WV and BV decreased the expression levels of inflammation markers, including inducible nitric oxide synthase and cyclooxygenase-2. In addition, WV decreased the nuclear translocation of nuclear factor κB (NF-κB), which is a key transcription factor in the regulation of cellular inflammatory response. Cumulatively, the results demonstrated that WV inhibited LPS-induced neuroinflammation in microglial cells by suppressing the NF-κB-mediated signaling pathway, which warrants further studies to confirm its therapeutic potential for neurodegenerative diseases.

2008 ◽  
Vol 430 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Seo-Yeon Yoon ◽  
Young-Bae Kwon ◽  
Hyun-Woo Kim ◽  
Dae-Hyun Roh ◽  
Hyoung-Sig Seo ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Hongtan Wu ◽  
Haiyue Pang ◽  
Yupei Chen ◽  
Lisen Huang ◽  
Huaxin Liu ◽  
...  

A polyphenol-enriched fraction (PEF) from Acalypha wilkesiana, whose leaves have been traditionally utilized for the treatment of diverse medical ailments, was investigated for the anti-inflammatory effect and molecular mechanisms by using lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages and acetaminophen- (APAP-) induced liver injury mouse model. Results showed that PEF significantly attenuated LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production and suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) in RAW 264.7 macrophages. PEF also reduced the secretion of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin- (IL-) 1β, and IL-6 in LPS-stimulated RAW 264.7 macrophages. Moreover, PEF potently inhibited LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) as well as the activation of nuclear factor-κB (NF-κB) by preventing the degradation of inhibitor κB-α (IκB-α). In vivo, PEF pretreatment ameliorated APAP-induced liver injury and hepatic inflammation, as presented by decreased hepatic damage indicators and proinflammatory factors at both plasma and gene levels. Additionally, PEF pretreatment remarkably diminished Toll-like receptor 3 (TLR3) and TLR4 expression and the subsequent MAPKs and NF-κB activation. HPLC analysis revealed that two predominantly polyphenolic compounds present in PEF were geraniin and corilagin. These results indicated that PEF has an anti-inflammatory effect, and its molecular mechanisms may be involved in the inactivation of the TLR/MAPK/NF-κB signaling pathway, suggesting the therapeutic potential of PEF for inflammatory diseases.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1895
Author(s):  
Azra Memon ◽  
Bae Yong Kim ◽  
Se-eun Kim ◽  
Yuliya Pyao ◽  
Yeong-Geun Lee ◽  
...  

Background: Phytoncide is known to have antimicrobial and anti-inflammatory properties. Purpose: This study was carried out to confirm the anti-inflammatory activity of two types of phytoncide extracts from pinecone waste. Methods: We made two types of animal models to evaluate the efficacy, an indomethacin-induced gastroenteritis rat model and a dextran sulfate sodium-induced colitis mouse model. Result: In the gastroenteritis experiment, the expression of induced-nitric oxide synthase (iNOS), a marker for inflammation, decreased in the phytoncide-supplemented groups, and gastric ulcer development was significantly inhibited (p < 0.05). In the colitis experiment, the shortening of the colon length and the iNOS expression were significantly suppressed in the phytoncide-supplemented group (p < 0.05). Conclusions: Through this study, we confirmed that phytoncide can directly inhibit inflammation in digestive organs. Although further research is needed, we conclude that phytoncide has potential anti-inflammatory properties in the digestive tract and can be developed as a functional agent.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 90
Author(s):  
Yun Kim ◽  
Yeong Ji ◽  
Na-Hyun Kim ◽  
Nguyen Van Tu ◽  
Jung-Rae Rho ◽  
...  

Using bio-guided fractionation and based on the inhibitory activities of nitric oxide (NO) and prostaglandin E2 (PGE2), eight isoquinolinequinone derivatives (1–8) were isolated from the marine sponge Haliclona sp. Among these, methyl O-demethylrenierate (1) is a noble ester, whereas compounds 2 and 3 are new O-demethyl derivatives of known isoquinolinequinones. Compound 8 was assigned as a new 21-dehydroxyrenieramycin F. Anti-inflammatory activities of the isolated compounds were tested in a co-culture system of human epithelial Caco-2 and THP-1 macrophages. The isolated derivatives showed variable activities. O-demethyl renierone (5) showed the highest activity, while 3 and 7 showed moderate activities. These bioactive isoquinolinequinones inhibited lipopolysaccharide and interferon gamma-induced production of NO and PGE2. Expression of inducible nitric oxide synthase, cyclooxygenase-2, and the phosphorylation of MAPKs were down-regulated in response to the inhibition of NF-κB nuclear translocation. In addition, nuclear translocation was markedly promoted with a subsequent increase in the expression of HO-1. Structure-activity relationship studies showed that the hydroxyl group in 3 and 5, and the N-formyl group in 7 may be key functional groups responsible for their anti-inflammatory activities. These findings suggest the potential use of Haliclona sp. and its metabolites as pharmaceuticals treating inflammation-related diseases including inflammatory bowel disease.


2021 ◽  
Vol 11 (10) ◽  
pp. 4711
Author(s):  
Woo Jin Lee ◽  
Wan Yi Li ◽  
Sang Woo Lee ◽  
Sung Keun Jung

Until now, the physiological effects of Soroseris hirsuta were primarily unknown. Here we have evaluated the anti-inflammatory and antioxidant effects of Soroseris hirsuta extract (SHE) on lipopolysaccharide (LPS)-activated murine macrophages RAW 264.7 cells. SHE inhibited nitric oxide expression and inducible nitric oxide synthase expression in RAW 264.7 cells treated with LPS. Moreover, SHE suppressed LPS-induced phosphorylation of IκB kinase, inhibitor of kappa B, p65, p38, and c-JUN N-terminal kinase. Western blot and immunofluorescence analyses showed that SHE suppressed p65 nuclear translocation induced by LPS. Furthermore, SHE inhibited the reactive oxygen species in LPS-treated RAW 264.7 cells. SHE significantly increased heme oxygenase-1 expression and the nuclear translocation of nuclear factor erythroid 2-related factor 2. SHE suppressed LPS-induced interleukin-1β mRNA expression in RAW 264.7 cells. Thus, SHE is a promising nutraceutical as it displays anti-inflammatory and antioxidant properties.


Toxicon ◽  
2012 ◽  
Vol 60 (2) ◽  
pp. 115-116
Author(s):  
Mohammad Nabiuni ◽  
Kazem Parivar ◽  
Bahman Zeynali ◽  
Azar Sheikholeslami ◽  
Latifeh Karimzadeh

2021 ◽  
Author(s):  
Daniela Dias-Pedroso ◽  
José S. Ramalho ◽  
Vilma A. Sardão ◽  
John G. Jones ◽  
Carlos C. Romão ◽  
...  

Abstract Microglia are the immune competent cell of the central nervous system (CNS), promoting brain homeostasis and regulating inflammatory response against infection and injury. Chronic or exacerbated neuroinflammation is a cause of damage in several brain pathologies. Endogenous carbon monoxide (CO), produced from the degradation of heme, is described as anti-apoptotic and anti-inflammatory in several contexts, including in the CNS. Neuroglobin (Ngb) is a haemoglobin-homologous protein, which upregulation triggers antioxidant defence and prevents neuronal apoptosis. Thus, we hypothesized a crosstalk between CO and Ngb, in particular, that the anti-neuroinflammatory role of CO in microglia depends on Ngb. A novel CO-releasing molecule (ALF826) based on molybdenum was used for delivering CO in microglial culture.BV-2 mouse microglial cell line was challenged with lipopolysaccharide (LPS) for triggering inflammation, and after 6h ALF826 was added. CO exposure limited inflammation by decreasing inducible nitric oxide synthase (iNOS) expression and the production of nitric oxide (NO) and tumour necrosis factor-a (TNF-a), and by increasing interleukine-10 (IL-10) release. CO-induced Ngb upregulation correlated in time with CO’s anti-inflammatory effect. Moreover, knocking down Ngb reversed the anti-inflammatory effect of CO, suggesting that dependents on Ngb expression. CO-induced Ngb upregulation was independent on ROS signalling, but partially dependent on the transcriptional factor SP1. Finally, microglial cell metabolism is also involved in the inflammatory response. In fact, LPS treatment decreased oxygen consumption in microglia, indicating a switch to glycolysis, which is associated with a proinflammatory. While CO treatment increased oxygen consumption, reverting LPS effect and indicating a metabolic shift into a more oxidative metabolism. Moreover, in the absence of Ngb this phenotype was no longer observed, indicating Ngb is needed for CO’s modulation of microglial metabolism. Finally, the metabolic shift induced by CO did not depend on alteration of mitochondrial population. In conclusion, neuroglobin emerges for the first time as a key player for CO signalling against exacerbated neuroinflammation in microglia.


2018 ◽  
Vol 19 (12) ◽  
pp. 3746 ◽  
Author(s):  
Ye Jeong ◽  
Mi-Young Lee

Populus deltoides, known as eastern cottonwood, has been commonly used as a medicinal plant. The aim of the present study was to investigate the mechanism underlying the anti-inflammatory activity of P. deltoides leaf extract (PLE). PLE effectively inhibited the expression of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, but not that of cyclooxygenase-2 (COX-2) and prostaglandin E2. Proinflammatory tumor necrosis factor alpha (TNF-α) levels were also reduced by the extract. PLE inhibited the phosphorylation of nuclear factor-kappa B (NF-κB) and inhibitor of Kappa Bα (IκBα), and blunted LPS-triggered enhanced nuclear translocation of NF-κB p65. In mitogen-activated protein kinase (MAPK) signaling, PLE effectively decreased the phosphorylation of p38 and c-Jun N-terminal protein kinase (JNK), but not of extracellular signal-regulated kinase 1/2 (ERK1/2). Taken together, these results suggest that anti-inflammatory activity of P. deltoides leaf extract might be driven by iNOS and NO inhibition mediated by modulation of the NF-κB and p38/JNK signaling pathways.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Nabil Albaser ◽  
Najeeb Ghanem ◽  
Mohanad Shehab ◽  
Adnan Al-Adhal ◽  
Mohammed Amood AL-Kamarany

Caralluma is a plant that possessing a great therapeutic potential in folk medicine in Yemen, namely, Caralluma penicillata (C. penicillata) as antiulcer. The study aims to evaluate the anti-inflammatory properties and gastritis protection activity of C. penicillata against indomethacin in adult guinea pigs. The study was divided into four parts: firstly, the optimum dose of extract as anti-inflammatory effect was determined. Secondly, the acute anti-inflammatory effect of extract were estimated. Thirdly, the repeated doses of extract against chronic inflammation was estimated. The anti-inflammatory activity of extract was compared with indomethacin as a prototype of drug against inflammation. Fourthly, the gastritis protection properties of extract with/without indomethacin were performed. The results showed that a 400 mg/kg of 10% ethanol extract produced the maximum of anti-inflammatory effect. Also, the single dose of extract was equipotent for indomethacin (10 mg/kg), but shorter in duration with regard to acute anti-inflammatory effect. In addition, the repeated doses of extract against chronic inflammation were less potent than indomethacin with regard to ulcerogenic effect. On the other hand, extract-indomethacin combination reduced the gastritis effect of indomethacin based on ulcer index and histological study.


Sign in / Sign up

Export Citation Format

Share Document