scholarly journals Fungal Communities Vectored by Ips sexdentatus in Declining Pinus sylvestris in Ukraine: Focus on Occurrence and Pathogenicity of Ophiostomatoid Species

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1119
Author(s):  
Kateryna Davydenko ◽  
Rimvydas Vasaitis ◽  
Malin Elfstrand ◽  
Denys Baturkin ◽  
Valentyna Meshkova ◽  
...  

Drought-induced stress and attacks by bark beetle Ips sexdentatus currently result in a massive dieback of Pinus sylvestris in eastern Ukraine. Limited and fragmented knowledge is available on fungi vectored by the beetle and their roles in tree dieback. The aim was to investigate the fungal community vectored by I. sexdentatus and to test the pathogenicity of potentially aggressive species to P. sylvestris. Analysis of the fungal community was accomplished by combining different methods using insect, plant, and fungal material. The material consisted of 576 beetles and 96 infested wood samples collected from six sample plots within a 300 km radius in eastern Ukraine and subjected to fungal isolations and (beetles only) direct sequencing of ITS rDNA. Pathogenicity tests were undertaken by artificially inoculating three-to-four-year-old pine saplings with fungi. For the vector test, pine logs were exposed to pre-inoculated beetles. In all, 56 fungal taxa were detected, 8 exclusively by isolation, and 13 exclusively by direct sequencing. Those included nine ophiostomatoids, five of which are newly reported as I. sexdentatus associates. Two ophiostomatoid fungi, which exhibited the highest pathogenicity, causing 100% dieback and mortality, represented genera Graphium and Leptographium. Exposure of logs to beetles resulted in ophiostomatoid infections. In conclusion, the study revealed numerous I. sexdentatus-vectored fungi, several of which include aggressive tree pathogens.

Author(s):  
Kateryna Davydenko

Pine bark beetles are typically associated with complexes of fungi that could reveal different functional interaction. Thus, previously nonaggressive bark beetle Ips acuminatus is considering now to be among the most serious pests of pine forest in Ukraine and other European countries and vectored fungal community is very important to assess total harm of this bark beetle. The aim of this study was to reveal the vectored fungal community associated with the pine engraver beetle, I. acuminatus with special emphasis on pathogenic fungi for further evaluation of harm bark-beetle - fungi association for Ukrainian forest. In total, 288 adult beetles were collected from Scots pine trees at six different sites through Ukraine. DNA sequencing as fungal culturing from all beetles resulted in 1681 isolates and amplicons representing 42 fungal taxa. NCBI BLAST search revealed that the overall fungal community was composed of 94 species, of which 80.85% were Ascomycota, followed by Basidiomycota and unidentified fungal group, which accounted for 10.6% and 8.5 % of the total sequences, respectively. Among these, the most commonly detected fungi for pooling dataset were Sphaeropsis sapinea (23.6%), Cladosporium pini-ponderosae (19.44%), Ophiostoma ips (19.1%), Ophiostoma canum (19.1%) and Cladobotryum mycophilum (18.06%). In the pooled dataset of isolates and amplicons for each site, Shannon diversity indices ranged between 1.9 and 2.9 while Simpson diversity index varied between 0.69 and 0.89 indicating rich species diversity. In total twelve ophiostomatoid species were detected. All ophiostomatoid fungi were showing varying degrees of virulence and O. minus was the most aggressive fungus in previous studies. It is concluded that I. acuminatus vectors a species-rich fungal community including pathogens such as ophiostomatoid fungi, Sphaeropsis sapinea, different needle pathogens and wood decay fungi that seems to be very important for the assessment of threat of I. acuminatus to the pine forest in Ukraine.


2011 ◽  
Vol 74 (4) ◽  
pp. 345-350 ◽  
Author(s):  
Robert Jankowiak ◽  
Jacek Hilszczański

This study dealt with the species distribution and frequency of ophiostomatoid fungi associated with the bark beetle Ips typographus on Norway spruce and Scots pine in north-eastern Poland. At all locations high spruce bark beetle damage has occurred in 2002-2003. Fungi were isolated from beetles and from brood systems of trees infested by the spruce bark beetle. The ophiostomatoid fungi were represented by 13 species. A similar spectrum of ophiostomatoid fungi as that recorded from <em>Picea abies</em> was associated with <em>I. typographus</em> on <em>Pinus sylvestris</em> trees. The most frequent ophiostomatoid species isolated from beetles, phloem and sapwood of Norway spruce were <em>O. bicolor</em> and <em>O. penicillatum</em>. The frequency of occurrence of ophiostomatoid fungi varied significantly among the examined locations. <em>O. bicolor</em> was the most frequently found species on Scots pine infested by <em>I. typographus</em>. The potential role of ophiostomatoid fungi in the epidemiology of <em>I. typographus</em> is discussed. Additionally, we also recorded how the ophiostomatoid fungi associated with spruce bark beetle could grow into phloem and sapwood of <em>Pinus sylvestris</em> trees.


Author(s):  
Kateryna Davydenko ◽  
Denys Baturkin

K. Davydenko[1], D. Baturkin[2] Intensive mortality of Pinus sylvestris trees has recently been observed in the Sumy region in eastern Ukraine. There are two pine bark beetle species (Ips acuminatus and Ips sexdentatus), which spread resulted in considerable forest damage in Ukraine. The study of ophiostomatoid fungi vectored by bark beetles is very important to assess total harm of these insects. Therefore, the aim of our research was i) to identify ophiostomatoid fungi associated with weakened and dying Scots pine trees infested by bark beetles in the Sumy region; ii) to test the pathogenicity of these ophiostomatoid fungi to evaluate their potential threat to Scots pine. The fungi were isolated from bark beetle galleries and identified based on morphological properties and DNA sequences. In total, eight ophiostomatoid fungi (Graphium sp., Grosmannia sp.1, Ophiostoma bicolor, O. ips, O. canum, O. piceae, O. minus, Ophiostoma sp.1) were isolated from Scots pine trees infested by bark beetles. Scots pine seedlings were inoculated with eight fungi and sterile medium (control) to evaluate their pathogenicity. The inoculated seedlings were examined finally in 6 month after inoculation. Inoculation with O. minus produced significantly largest lesions and only this fungus caused mortality of pine seedlings. In total, all eight fungal species inoculated caused resin exudation and staining the bark around inoculations in Scots pine seedlings and five fungi caused different rate of seedlings decline. The size of stained sapwood was also greater following O. minus inoculations than other fungi or the control. All ophiostomatoid fungi caused significantly longer necrotic lesions and more occlusions in the sapwood than the controls. Therefore, based on the ability of various ophiostomatoid fungi to weaken and kill pine seedlings and stain sapwood, O. minus was the most dangerous species for Scots pine trees, followed by Graphium sp. and Ophiostoma sp.1. The occurrence of ophiostmatoid fungi in the sapwood of Scots pine is consistent with the concept of their primary role in the colonization of the fresh sapwood of trees in the succession of microorganisms during wood decay.    


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jingzhong Chen ◽  
Xiaolong Huang ◽  
Bingli Tong ◽  
Deng Wang ◽  
Jiming Liu ◽  
...  

Abstract Background This study examined how rhizosphere fungi influence the accumulation of chemical components in fruits of a small population species of Cinnamomum migao. Results Ascomycota and Basidiomycota were dominant in the rhizosphere fungal community of C. migao. Pestalotiopsis and Gibellulopsis were associated with α-Terpineol and sabinene content, and Gibellulopsis was associated with crude fat and carbohydrate content. There were significant differences in rhizosphere fungal populations between watersheds, and there was no obvious change between fruiting periods. Gibberella, Ilyonectria, Micropsalliota, and Geminibasidium promoted sabinene accumulation, and Clitocybula promoted α-Terpineol accumulation. Conclusion The climate-related differentiation of rhizosphere fungal communities in watershed areas is the main driver of the chemical composition of C. migao fruit. The control of the production of biologically active compounds by the rhizosphere fungal community provides new opportunities to increase the industrial and medicinal value of the fruit of C. migao.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1113
Author(s):  
Xiaolong Lin ◽  
Zongmu Yao ◽  
Xinguang Wang ◽  
Shangqi Xu ◽  
Chunjie Tian ◽  
...  

Rice is a staple food for the world’s population. However, the straw produced by rice cultivation is not used sufficiently. Returning rice straw to the field is an effective way to help reduce labor and protect the soil. This study focused on the effect of water-covered depth with the freeze–thaw cycle on rice straw decomposition and the soil fungal community structure in a field in Northeast China. The field and controlled experiments were designed, and the fungal ITS1 region was tested by high-throughput sequencing for analyzing the fungal communities in this study. The results showed that water coverage with the freeze–thaw cycle promoted the decomposition of rice straw and influenced the fungal community structure; by analyzing the network of the fungal communities, it was found that the potential keystone taxa were Penicillium, Talaromyces, Fusarium, and Aspergillus in straw decomposition; and the strains with high beta-glucosidase, carboxymethyl cellulase, laccase, lignin peroxidase, and manganese peroxidase could also be isolated in the treated experiment. Furthermore, plant pathogenic fungi were found to decrease in the water-covered treatment. We hope that our results can help in rice production and straw return in practice.


Author(s):  
Gonca Ece Özcan ◽  
Korhan Enez ◽  
Burak Arıcak

Forest roads are important transportation equipment through forested areas in the rugged, mountainous terrain of northern Turkey. Forest roads harm forest ecosystems due to both the manner in which they are established and how they are used afterwards. Damage to trees that occur during road construction through forests stresses trees, which facilitates outbreaks of bark beetle populations. Bark beetles are significant risk to the health and productivity of Turkish pine forests and to pine forests worldwide. In particular, Ips sexdentatus (Boerner) (Coleoptera, Curculionidae, Scolytinae) is a particularly destructive species of bark beetle in Turkish forests. Their damage to coniferous trees threatens the sustainability of the forest ecosystems. This study primarily aims to assess the intensity of damage that I. sexdentatus inflicts on Pinus nigra J.F.Arnold stands relative to several parameters: the distance to the nearest forest road, aspect (shady - sunny), slope (0–15% or >15%), and other stand characteristics. In this study, we show how damage by an I. sexdentatus infestation in pure black pine stands varies with distance to forest roads and in situ edaphic factors. We sampled 45 plots (400 m2 each), slope, aspect and distances to the nearest forest road was determined using ArcGIS software and the region’s road network overlays. Results showed that trees located within 100 m from the nearest forest road were the most severely damaged ones. The intensity of I. sexdentatus damage was about 16% in a hectare. Trees that were in 16–20 cm diameter class were damaged more often. I. sexdentatus damage did not show any significant correlation with the slope, aspect or degree of canopy closure.


2020 ◽  
Author(s):  
Li Ji ◽  
Yan Zhang ◽  
Yuchun Yang ◽  
Lixue Yang ◽  
Na Yang ◽  
...  

Abstract Background: Establishing mixed plantations is an effective way to improve soil fertility and increase forest productivity. Arbuscular mycorrhizal (AM) fungi are obligate symbiotic fungi that can promote mineral nutrient absorption and regulate intraspecific and interspecific competition in plants. However, the effects of mixed plantations on the community structure and abundance of AM fungi are still unclear. Illumina MiSeq sequencing was used to investigate the AM fungal community in the roots and soils of pure and mixed plantations (Juglans mandshurica × Larix gmelinii). The objective of this study is to compare the differential responses of the root and rhizosphere soil AM fungal communities of Juglans mandshurica to long-term mixed plantation management.Results: Glomus and Paraglomus were the dominant genera in the root samples, accounting for more than 80% of the sequences. Compared with that in the pure plantation, the relative abundance of Glomus was higher in the mixed plantation. Glomus, Diversispora and Paraglomus accounted for more than 85% of the sequences in the soil samples. The relative abundances of Diversispora and an unidentified genus of Glomeromycetes were higher and lower in the pure plantation, respectively. The Root_P samples (the roots in the pure plantation) had the highest number of unique OTUs (operational taxonomic units), which belonged mainly to an unidentified genus of Glomeromycetes, Paraglomus, Glomus and Acaulospora. The number of unique OTUs detected in the soil was lower than that in the roots. In both the root and soil samples, the forest type did not have a significant effect on AM fungal diversity, but the Sobs value and the Shannon, Chao1 and Ace indices of AM fungi in the roots were significantly higher than those in the soil.Conclusions: Mixed forest management had little effect on the AM fungal community of Juglans mandshurica roots and significantly changed the community composition of the soil AM fungi, but not the diversity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhimin Zhang ◽  
Qinghui Deng ◽  
Xiuyun Cao ◽  
Yiyong Zhou ◽  
Chunlei Song

Despite fungi playing an important role in nutrient decomposition in aquatic ecosystems and being considered as vital actors in the ecological processes, they received limited attention regarding the community in aquaculture pond sediments which are extremely important and typically disturbed habitats. Using an ITS1 region of fungal rDNA, this study aimed to investigate sediment fungal communities in fish, crab, and crayfish ponds for decades of farming practices at representative aquaculture regions in the middle Yangtze River basin, China. We then aimed to explore the community patterns associated with species-based farming practices in the ponds at 18 farms. The results showed that the pond sediments harbored more than 9,000 operational taxonomic units. The sediments had significantly higher alpha diversity in crab ponds compared to that in fish and crayfish ponds. The fungal phyla largely belonged to Ascomycota and Chytridiomycota, and the dominance of Rozellomycota over Basidiomycota and Aphelidiomycota was observed. The majority of sediment fungal members were ascribed to unclassified fungi, with higher proportions in fish ponds than crab and crayfish ponds. Further, the fungal communities were markedly distinct among the three types of ponds, suggesting divergent patterns of fungal community assemblages caused by farming practices in aquaculture ponds. The community diversity and structure were closely correlated to sediment properties, especially sediment carbon content and pH. Thus, the distribution and pattern of fungal communities in the sediments appear to primarily depend on species-based farming practices responsible for the resulting sediment carbon content and pH in aquaculture ponds. This study provides a detailed snapshot and extension of understanding fungal community structure and variability in pond ecosystems, highlighting the impacts of farming practices on the assembly and succession of sediment fungal communities in aquaculture ponds.


Sign in / Sign up

Export Citation Format

Share Document