scholarly journals Sperm Antioxidant Biomarkers and Their Correlation with Clinical Condition and Lifestyle with Regard to Male Reproductive Potential

2020 ◽  
Vol 9 (6) ◽  
pp. 1785
Author(s):  
Wirginia Krzyściak ◽  
Monika Papież ◽  
Ewelina Bąk ◽  
Eva Morava ◽  
Paweł Krzyściak ◽  
...  

Measurement of sperm oxidative-antioxidant indicators is widely used in the assessment and detection of biochemical causes of male infertility. The main purpose of this study was to identify biomarkers that assist in diagnostics and monitoring of male reproductive potential. We performed the assessment of oxidative-antioxidant malondialdehyde (MDA), glutathione (GSH), and total redox antioxidant potential (TRAP) indicators in seminal plasma, seminogram, clinical condition, and lifestyle of people with reproductive problems. The combined assessment of GSH and TRAP as potential biomarkers of male infertility in semen plasma was characterized by the highest total sensitivity and specificity. Furthermore, we provide evidence that male reproductive potential is significantly correlated with basic sperm parameters, sperm cell membrane integrity, their morphology, lifestyle, eating habits, occupation, and mental health. Our results provide evidence on the importance of oxidative stress and defense against free radicals in diagnosing and monitoring men with infertility that are consistent with previously conducted research. We provide an alternative approach on the possibility of interpreting the combination of the biomarkers that can bring benefits to a multi-threaded approach to the diagnosis and treatment of male infertility.

2014 ◽  
Vol 94 (4) ◽  
pp. 601-606 ◽  
Author(s):  
Anna Wysokińska ◽  
Stanislaw Kondracki

Wysokińska, A. and Kondracki, S. 2014. Assessment of changes in sperm cell membrane integrity occurring during the storage of semen from genetically different males using two diagnostic methods. Can. J. Anim. Sci. 94: 601–606. The present study was carried out to assess changes in sperm cell membrane integrity occurring during the storage of semen collected from genetically different domestic male pigs. The study was aimed at assessing differences in the course of changes in the integrity of cell membranes in spermatozoa produced by males with different degrees of genetic diversity (pure-bred males, two-breed hybrids and multi-breed crosses) and testing the usefulness of two methods of sperm cell membrane integrity evaluation, based on material collected from genetically different males. The experiments were conducted on 56 ejaculates collected from 28 domestic male pigs. The examination of sperm cell membrane integrity was performed three times for each ejaculate, i.e., after 1 h, after 24 h and after 48 h from collection. The preparations for analysing cell membrane integrity were made using two methods: the SYBR 14/PI method and the eosin–nigrosin method. It was found that both SYBR 14/PI and eosin–nigrosin staining methods make it possible to successfully assess the integrity of the plasma membrane of domestic pig sperm cells under in vitro conditions. Hybrid pig spermatozoa, especially those from multi-breed crosses, better retain the integrity of their plasmalemmas than the spermatozoa of pure-bred boars. The ejaculates of Hypor cross-breed boars assessed after 1, 24 and 48 h of storage contain more spermatozoa with intact cell membranes than the ejaculates of pure-bred Duroc and Pietrain boars. The ejaculates of Hypor boars also show fewer decaying spermatozoa than those produced by pure-bred boars.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3373
Author(s):  
Anna Wysokińska ◽  
Dorota Szablicka

The aim of the study was to assess changes in the integrity of sperm cell membranes during the storage of semen collected from Duroc × Pietrain crossbred boars and purebred boars of the component breeds. To compare the cell membrane integrity of sperm heads in crossbred and purebred boars, heterosis effects were estimated. The study was conducted on 48 ejaculates collected from Duroc × Pietrain crossbred boars and from purebred Duroc and Pietrain boars used for artificial insemination. Microscope slides were prepared from each ejaculate for the evaluation of the cell membrane integrity of the sperm, at 1, 24, 48, 72, and 96 h after collection of the ejaculate. Diluted ejaculates were stored at 17 °C. Sperm membrane integrity was analysed by two methods: SYBR-14/PI and eosin–nigrosin. Our results showed that the cell membrane integrity of sperm heads changed with storage time, but the extent of the changes varied depending on the genetic group of boars. The semen of Duroc × Pietrain crossbreds was clearly seen to be less sensitive to storage conditions than that of boars of the parent breeds, which was confirmed by the calculated heterosis effects. The percentage of sperm with an intact cell membrane was higher in crossbred boars than in purebred boars (p ≤ 0.05). In addition, significantly fewer moribund sperm spermatozoa and spermatozoa with a damaged cell membrane were observed in crossbred boars (p ≤ 0.05). In the semen of purebred Duroc and Pietrain boars, the cell membrane integrity of the sperm should be assessed more often during storage than in the semen of Duroc × Pietrain crossbred boars. This study provides valuable information for the development and implementation of semen quality monitoring in crossbred boars and boars of the parent breeds during storage at 17 °C with respect to the cell membrane structure of sperm heads. The evaluation methods used effectively identify damage to the cell membranes of the sperm during semen storage.


2020 ◽  
Vol 50 (3) ◽  
pp. 389-396
Author(s):  
K.S. Mafolo ◽  
C.M. Pilane ◽  
T. Chitura ◽  
T.L. Nedambale

Traditionally, egg yolk is a protective agent that is used to freeze semen in various species. However, the addition of egg yolk in extender risks the introduction of disease. Therefore, an alternative cryoprotective agent should be found to preserve ram semen. The aim of this study was to evaluate the effect of phosphatidylcholine (PC) as a protective agent in extender with or without egg yolk on semen characteristics and acrosome integrity of frozen then thawed Bapedi ram semen. Semen was collected from four mature Bapedi rams, in the Agricultural Research Council (ARC) Germplasm Conservation Programme, using an artificial vagina. Following collection, semen samples were randomly diluted into Tris-based extender (1: 2), with and without egg yolk, and supplemented with four concentrations of PC liposome (0 mg/ml), 0.25 mg/ml, 0.5 mg/ml and 0.75 mg/ml). Supplementation of PC liposome in extender with or without egg yolk did not improve the semen total motility (TM), progressive motility (PM) and rapid motility (RM) rate. The sperm cell membrane integrity in extender with or without egg yolk was not influenced by the supplementation of PC liposome after thawing (P >0.05). The addition of PC liposome to Tris-based extender with egg yolk had a similar result to control (Tris-based extender with egg yolk) on sperm cell acrosome integrity. In conclusion, supplementation of PC liposome to Tris-based extender without egg yolk had lower sperm cell viability and motility rates compared with the extender with egg yolk, regardless of concentration.Keywords: acrosome, cryoprotectant, liposome, membrane, motility


2020 ◽  
Vol 13 ◽  
Author(s):  
Milad Ashrafizadeh ◽  
Saeed Samarghandian ◽  
Kiavash Hushmandi ◽  
Amirhossein Zabolian ◽  
Md Shahinozzaman ◽  
...  

Background: Ischemia/reperfusion (I/R) injury is a serious pathologic event that occurs due to restriction in blood supply to an organ, followed by hypoxia. This condition leads to enhanced levels of pro-inflammatory cytokines such as IL-6 and TNF-, and stimulation of oxidative stress via enhancing reactive oxygen species (ROS) levels. Upon reperfusion, blood supply increases, but it deteriorates condition, and leads to generation of ROS, cell membrane disruption and finally, cell death. Plant derived-natural compounds are well-known due to their excellent antioxidant and anti-inflammatory activities. Quercetin is a flavonoid exclusively found in different vegetables, herbs, and fruits. This naturally occurring compound possesses different pharmacological activities making it appropriate option in disease therapy. Quercetin can also demonstrate therapeutic effects via affecting molecular pathways such as NF-B, PI3K/Akt and so on. Methods: In the present review, we demonstrate that quercetin administration is beneficial in ameliorating I/R injury via reducing ROS levels, inhibition of inflammation, and affecting molecular pathways such as TLR4/NF-B, MAPK and so on. Results and conclusion: Quercetin can improve cell membrane integrity via decreasing lipid peroxidation. Apoptotic cell death is inhibited by quercetin via down-regulation of Bax, and caspases, and upregulation of Bcl-2. Quercetin is able to modulate autophagy (inhibition/induction) in decreasing I/R injury. Nanoparticles have been applied for delivery of quercetin, enhancing its bioavailability and efficacy in alleviation of I/R injury. Noteworthy, clinical trials have also confirmed the capability of quercetin in reducing I/R injury.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marie C. Lefevre ◽  
Gerwin Dijk ◽  
Attila Kaszas ◽  
Martin Baca ◽  
David Moreau ◽  
...  

AbstractGlioblastoma is a highly aggressive brain tumor, very invasive and thus difficult to eradicate with standard oncology therapies. Bioelectric treatments based on pulsed electric fields have proven to be a successful method to treat cancerous tissues. However, they rely on stiff electrodes, which cause acute and chronic injuries, especially in soft tissues like the brain. Here we demonstrate the feasibility of delivering pulsed electric fields with flexible electronics using an in ovo vascularized tumor model. We show with fluorescence widefield and multiphoton microscopy that pulsed electric fields induce vasoconstriction of blood vessels and evoke calcium signals in vascularized glioblastoma spheroids stably expressing a genetically encoded fluorescence reporter. Simulations of the electric field delivery are compared with the measured influence of electric field effects on cell membrane integrity in exposed tumor cells. Our results confirm the feasibility of flexible electronics as a means of delivering intense pulsed electric fields to tumors in an intravital 3D vascularized model of human glioblastoma.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1203
Author(s):  
Huan Zhang ◽  
Jianhang Xu ◽  
Qian Chen ◽  
Hui Wang ◽  
Baohua Kong

As functional starter cultures and potential probiotics, the ability of lactic acid bacteria to resist oxidative stress is essential to maintain viability and functional properties. This study investigates the effects of H2O2 at different concentrations (0, 1, 2, and 3 mM) on the physiological, morphological, and antioxidant properties of Pediococcus pentosaceus R1 and Lactobacillus fermentum R6 isolated from Harbin dry sausages. The increase in H2O2 concentration induced a significant increase in reactive oxygen species and a decrease in intracellular ATP levels (p < 0.05). Based on scanning electron microscopy, transmission electron microscopy, and electric conductivity analysis, H2O2 stress caused cell deformation, the destruction of cell membrane integrity, partial loss of the cytoplasm, and an increase in the cell conductivity of both strains. H2O2 stress with 1 mM or 2 mM concentrations could effectively improve the scavenging rates of free radicals, the activities of superoxide dismutase and glutathione peroxide, and the total antioxidant capacity of both strains (p < 0.05). In conclusion, an appropriate oxidative stress contributed to the activation of the antioxidant defense system of both strains, conferred strains a better effect in inhibiting the oxidation of fermented foods, and improved the health of the host.


2016 ◽  
Vol 141 ◽  
pp. 291-300 ◽  
Author(s):  
Jonas Hedberg ◽  
Hanna L. Karlsson ◽  
Yolanda Hedberg ◽  
Eva Blomberg ◽  
Inger Odnevall Wallinder

2007 ◽  
Vol 97 (2) ◽  
pp. 321-328 ◽  
Author(s):  
S. Aisling Aherne ◽  
Joseph P. Kerry ◽  
Nora M. O'Brien

Experimental evidence suggests that most herbs and spices possess a wide range of biological and pharmacological activities that may protect tissues against O2-induced damage. The objectives of the present study were: first, to determine the effects of plant extracts on the viability, membrane integrity, antioxidant status and DNA integrity of Caco-2 cells and second, to investigate the cytoprotective and genoprotective effects of these plant extracts against oxidative stress in Caco-2 cells. The plant extracts examined were rosemary (Rosmarinus officinalis L.), oregano (Origanum vulgare L.), sage (Salvia officinalis L.) and echinacea (Echinacea purpurea L.). Cell membrane integrity was assessed by the lactate dehydrogenase release assay. Viability was determined by the neutral red uptake assay (NRUA) and the concentration of compound that resulted in 50 % cell death (IC50) was calculated. Antioxidant status of the cells was assessed by measuring GSH content, catalase activity and superoxide dismutase activity. To examine their cytoprotective and genoprotective effects, Caco-2 cells were pre-treated with each plant extract for 24 h followed by exposure to H2O2. DNA damage was assessed by the comet assay and cell injury was determined by the NRUA. Rosemary was the most toxic (IC50 123 μg/ml) and echinacea the least toxic (IC50 1421 μg/ml). Sage was the only plant extract to affect the antioxidant status of the cells by increasing GSH content. Sage, oregano and rosemary protected against H2O2-induced DNA damage (olive tail moment and percentage tail DNA), whereas protection against H2O2-induced cytotoxicity was afforded by sage only.


Sign in / Sign up

Export Citation Format

Share Document