scholarly journals Development and Mechanical Properties of Basalt Fiber-Reinforced Acrylonitrile Butadiene Styrene for In-Space Manufacturing Applications

2019 ◽  
Vol 3 (3) ◽  
pp. 89 ◽  
Author(s):  
Natalie Coughlin ◽  
Bradley Drake ◽  
Mikala Fjerstad ◽  
Easton Schuster ◽  
Tyler Waege ◽  
...  

A new basalt fiber reinforced acrylonitrile butadiene styrene (ABS) filament has been developed for fused filament fabrication (FFF, 3D printing) to be used in Mars habitat construction. Building habitats on Mars will be expensive, especially if all material must be shipped from earth. However, if some materials can be used from Mars, costs will dramatically decrease. Basalt is easily mined from the surface of Mars. This study details the production process of the material, experimental results from mechanical testing, and preliminary X-ray shielding characteristics. The addition of chopped 3 mm basalt fibers to standard FFF material, ABS, increased strength and stiffness of the composite material. By adding 25% (by weight) basalt fiber to ABS, tensile strength improved nearly 40% by increasing from 36.55 MPa to 50.58 MPa, while Modulus of Elasticity increased about 120% from 2.15 GPa to 4.79 GPa. Flexural strength increased by about 20% from 56.94 MPa to 68.51 MPa, while Flexural Modulus increased by about 70% from 1.81 GPa to 3.05 GPa. While compression results did not see much strength improvements, the addition of fibers also did not decrease compressive strength. This is important when considering that basalt fibers provide radiation shielding and the cost of adding basalt fibers to construction materials on Mars will be negligible compared to the cost of shipping other materials from earth. In preliminary digital radiography testing, it was shown that 77% of X-rays were shielded with 25% basalt fiber added (as compared to neat ABS). In small-scale 3D printing applications, the 25% fiber ratio seems to be the highest ratio that provides reliable FFF printing.

2021 ◽  
Vol 5 (4) ◽  
pp. 100
Author(s):  
Anjum Saleem ◽  
Luisa Medina ◽  
Mikael Skrifvars

New technologies in the automotive industry require lightweight, environment-friendly, and mechanically strong materials. Bast fibers such as kenaf, flax, and hemp reinforced polymers are frequently used composites in semi-structural applications in industry. However, the low mechanical properties of bast fibers limit the applications of these composites in structural applications. The work presented here aims to enhance the mechanical property profile of bast fiber reinforced acrylic-based polyester resin composites by hybridization with basalt fibers. The hybridization was studied in three resin forms, solution, dispersion, and a mixture of solution and dispersion resin forms. The composites were prepared by established processing methods such as carding, resin impregnation, and compression molding. The composites were characterized for their mechanical (tensile, flexural, and Charpy impact strength), thermal, and morphological properties. The mechanical performance of hybrid bast/basalt fiber composites was significantly improved compared to their respective bast fiber composites. For hybrid composites, the specific flexural modulus and strength were on an average about 21 and 19% higher, specific tensile modulus and strength about 31 and 16% higher, respectively, and the specific impact energy was 13% higher than bast fiber reinforced composites. The statistical significance of the results was analyzed using one-way analysis of variance.


2016 ◽  
Vol 16 (2) ◽  
pp. 69-74 ◽  
Author(s):  
Ayman M. M. Abdelhaleem ◽  
Mohammed Y. Abdellah ◽  
Hesham I. Fathi ◽  
Montasser Dewidar

AbstractAcrylonitrile-butadiene-styrene (ABS) has great verity applications in aerospace and automobiles industries. Mechanical strength of the ABS is superior to even that of impact resistant polystyrene. In addition metallic coatings can be applied to the surface of ABS moldings. The main aim of the present work is to investigate the mechanical properties of additives of basalt fibers (BF) to ABS with (5, 10, and 15) wt% embedded into the polymer matrix by using plastic injection molding technique. This new perceptions has been done on basalt fibers that have a potential low cost with its good mechanical performance. The ultimate tensile strength that obtained from the composite with 15 wt% is 56.67 MPa with 40.52 % increase value than neat ABS, Young’s modulus gradually increases with increasing the amount of additives. Impact un-notched strength decreases with a reported increment of 24.617 KJ.m–2. A Rockwell hardness test is also used and with the increases of additives the amount of hardness of the composite increases. A scan electron microscopy (SEM) on the fracture surface is captured to check the morphologies structure of the composite comparable with a neat ABS. and it is showed a very good distribution and bonding of the B.F. with the pure ABS. As well as the cost of the ABS and BF is reduced by a percentage of 15 %.


Aerospace ◽  
2019 ◽  
Vol 6 (7) ◽  
pp. 81 ◽  
Author(s):  
McFarland ◽  
Antunes

The last decade has seen an almost exponential increase in the number of rocket launches for sounding missions or for delivering payloads into low Earth orbits. The emergence of new technologies like rapid prototyping, including 3D printing, is changing the approach to rocket motor design. This project conducted a series of small-scale static fire tests of fused deposition manufacturing hybrid rocket motors that were designed to explore the performance of a variety of commonly available fused deposition manufacturing materials. These materials included acrylonitrile butadiene styrene, acrylonitrile styrene acrylate, polylactic acid (PLA), polypropylene, polyethylene terephthalate glycol, Nylon, and AL (PLA with aluminum particles). To test the performance of small-scale fuel grains, a modular apparatus with a range of sensors fitted to it was designed and manufactured. The small-scale testing performed static burns on two fuel grains of each material with initial dimensions of 100 mm long and 20 mm in diameter with a 6 mm straight circular combustion port. The focus of this study was mainly on the regression rates of each material of fuel grains. Acrylonitrile styrene acrylate and Nylon showed the highest regression rates, while the polyethylene terephthalate glycol regression rates were relatively poor. Also, the acrylonitrile butadiene styrene and acrylonitrile styrene acrylate demonstrating relatively high regression rates when compared to existing hybrid fuels like hydroxyl-terminated polybutadiene.


2018 ◽  
Vol 765 ◽  
pp. 355-360 ◽  
Author(s):  
Sakol Suon ◽  
Shahzad Saleem ◽  
Amorn Pimanmas

This paper presents an experimental study on the compressive behavior of circular concrete columns confined by a new class of composite materials originated from basalt rock, Basalt Fiber Reinforced Polymer (BFRP). The primary objective of this study is to observe the compressive behavior of BFRP-confined cylindrical concrete column specimens under the effect of different number of layers of basalt fiber as a study parameter (3, 6, and 9 layers). For this purpose, 8 small scale circular concrete specimens with no internal steel reinforcement were tested under monotonic axial compression to failure. The results of BFRP-confined concrete specimens of this study showed a bilinear stress-strain response with two ascending branches. Consequently, the performance of confined columns was improved as the number of BFRP layer was increased, in which all the specimens exhibited ductile behavior before failure with significant strength enhancement. The experimental results indicate the well-performing of basalt fiber in improving the concrete compression behavior with an increase in number of FRP layers.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4234
Author(s):  
Samir Mekid ◽  
Hammam Daraghma ◽  
Salem Bashmal

The paper presents an investigation and analysis of the electromechanical and thermal characteristics of the carbon fiber alone as single tow and embedded in host materials such as polymer e.g., acrylonitrile butadiene styrene (ABS) using 3D printing. While carbon fibers can partially reinforce the structure, they can act as sensors to monitor the structural health of the host material. The piezo-resistive behavior was examined without any pretreatment of the carbon fiber under tensile test in both cases. Special focus on the filaments clamping types and their effects was observed. An auxetic behavior was exhibited; otherwise, the free part shows elastic and yielding ranges with break point at high resistance. An induced temperature of the carbon fiber was measured during the tensile test to show low variation. The carbon fiber can provide strength contribution to the host material depending on the percentage of filling the material in 3D printing. The relative variation of the electrical resistance increases by 400% while embedded in the host material, but decreases as the tows filament density increases from 1 to 12 K.


2017 ◽  
Vol 52 (14) ◽  
pp. 1907-1914 ◽  
Author(s):  
Yang Zhiming ◽  
Liu Jinxu ◽  
Feng Xinya ◽  
Li Shukui ◽  
Xu Yuxin ◽  
...  

Basalt fiber reinforced aluminum matrix composites with different fiber contents (i.e. 0 wt%, 10 wt%, 30 wt% and 50 wt%) were prepared by hot-press sintering. Microstructure analysis indicates that basalt fibers are uniformly distributed in 10% basalt fiber reinforced aluminum matrix composite. The interfacial bonding between basalt fibers and aluminum matrix is good, and there is no interface reaction between basalt fiber and aluminum matrix. Quasi-static tensile, quasi-static compression and dynamic compression properties of basalt fiber reinforced aluminum composites were studied, and the influences of basalt fiber content on mechanical properties were discussed. Meanwhile, the failure mechanisms of basalt fiber reinforced aluminum matrix composites with different fiber content were analyzed.


Author(s):  
Tran Linh Khuong ◽  
Zhao Gang ◽  
Muhammad Farid ◽  
Rao Yu ◽  
Zhuang Zhi Sun ◽  
...  

Biomimetic robots borrow their structure, senses and behavior from animals, such as humans or insects, and plants. Biomimetic design is design ofa machine, a robot or a system in engineeringdomain thatmimics operational and/orbehavioral model of a biological system in nature. 3D printing technology has another name as rapid prototyping technology. Currently it is being developed fastly and widely and is applied in many fields like the jewelry, footwear, industrial design, architecture, engineering and construction, automotive, aerospace, dental and medical industry, education, geographic information system, civil engineering, guns. 3D printing technology is able to manufacture complicated, sophisticated details that the traditional processing method cannot manufacture. Therefore, 3D printing technology can be seen as an effective tool in biomimetic, which can accurately simulate most of the biological structure. Fused Deposition Modeling (FDM) is a technology of the typical rapid prototyping. The main content of the article is the focusing on tensile strength test of the ABS-Acrylonitrile Butadiene Styrene material after using Fused Deposition Modeling (FDM) technology, concretization after it’s printed by UP2! 3D printer. The article focuses on two basic features which are Tensile Strength and Determination of flexural properties.


Sign in / Sign up

Export Citation Format

Share Document