scholarly journals PERBANDINGAN KAPASITAS KUAT LENTUR PADA BETON BALOK TULANGAN BAMBU PILIN DENGAN KULIT DAN TANPA KULIT

2019 ◽  
Vol 2 (2) ◽  
pp. 299
Author(s):  
Angga Dwi Cahya ◽  
Yosef Cahyo Setianto Poernomo ◽  
Ahmad Ridwan

We all know that steel elements cannot be renewed and their constituent elements take a long time to form. So there is a need for other alternatives which have steellike properties. One alternative is bamboo, bamboo is one material that can be used as a substitute for steel, because bamboo has a high tensile strength close to the strength of steel. In this study an attempt was made to compare the use of reinforcement with bamboo on the outside with the skin and the inside without skin to determine the flexural strength. The flexural strength test results on variations of skin obtained the value of Max P: average: 3400 kg with an average deflection of 9.25 mm while in variations without the skin P Max produced an average of 2400 kg with deflection value of 1.92 mm. Kita ketahui bersama bahawa unsur baja tidak bisa diperbaharui serta unsur penyusunnya yang membutuhkan waktu yang lama untuk terbentuk. Sehingga  perlu adanya alternatif  lain yang dimana memiliki sifat menyerupai baja. Salah satu alternatifnya adalah bambu, bambu merupakan salah satu bahan dapat digunakan sebagai pengganti baja, karena  bambu mempunyai kuat tarik yang tinggi yang mendekati kekuatan baja. Pada penelitian ini dicoba untuk membandingkan penggunaan tulangan dengan bambu bagian luar dengan kulit dan bagian dalam tanpa kulit guna mengetahui kekuatan lentur. Hasil pengujian kuat  lentur pada variasi kulit didapatkan nilai P Maks: rata-rata:3400 kg dengan  lendutan  rata-rata 9.25 mm sedangkan pada variasi tanpa kulit P Maks rata-rata yang dihasilkan 2400 kg dengan nilai lendutan 1.92 mm.

Author(s):  
Noverma ◽  
Oktavi Elok Hapsari ◽  
Yusrianti

Bamboo has high tensile strength, so it can be an alternative to substitute wood or steel. Bamboo is a material that comes from nature, so it is vulnerable to degraded by weather changes and infected by termites and fungi. The effort to overcome this problem is by preserving before using it. This study aims to determine the tensile strength test results of bamboo after preserving and then compare with the tensile strength test results of bamboo without preserving. The research method was carried out by preserving bamboo by soaking the test sample in a container filled with water for a duration of time; 1 x 24 hours; 3 x 24 hours and 14 x 24 hours. The water used in freshwater with a salinity of 0 0/00 measured using a salinometer. The results showed that the tensile strength of bamboo increased compared without preserved with a percentage of 12.50%; 23.12% and 10.59% for the duration of time respectively 1x24 hours; 3x24 hours and 14x24 hours. Optimal tensile strength is obtained at a time duration of 3 x 24 hours and decreases at a longer time duration of 14x24 hours.


2021 ◽  
Vol 889 (1) ◽  
pp. 012019
Author(s):  
Manish Kumar Bhardwaj ◽  
Sanjeev Gupta

Abstract In this research work, waste rubber obtained from tires is mainly used as a fractional substitution of natural coarse aggregate to improve the strength aspects of the concrete. 3 dissimilar sizes of waste rubber obtained from tires aggregates were used that is of 4mm, 10 mm and 16 mm. Depending upon all three sizes all the waste rubber obtained from tires aggregate were used at 3 different percentages that are at 10 percent, 20 percent and 30 percent. Then several concrete samples were prepared depending upon the shape and percentage of the waste rubber obtained from tires aggregate. Then all these samples were cured and tested after 7 days and 28 days. Depending upon the results obtained after these above-discussed test various conclusions has been drawn which are as follows. It was found that the maximum strength was obtained at 20 percent usage of 4mm sized waste rubber obtained from tires aggregate, the strength obtained at 20 percentage with 4mm size was maximum as compared to all other concrete samples, so it can be concluded that the compressive strength depends upon both the size as well as on the percentage of waste rubber obtained from tires aggregate and with the decrease in size of the waste rubber obtained from tires aggregate the strength was increasing. From the test results of the split tensile strength test and flexural strength test, it was found that the maximum strength was obtained at 20 percent usage of 4mm sized waste rubber obtained from tires aggregate and with the increase in size and percentage the strength was declining. So therefore it can be concluded that both split tensile strength and flexural strength depends upon the size of waste rubber obtained from tires aggregate and the percentage of waste rubber obtained from tires aggregate. From the obtained test results it can be concluded that with the addition of the waste tire rubber the overall internal micro-structure of the concrete improves which further leads to enhanced mechanical strength of the concrete. This was due to the physical properties and the chemical composition of the waste tire rubber particles which fills the internal pores in a broader way and lead to improved mechanical strength.


2013 ◽  
Vol 24 (6) ◽  
pp. 630-634 ◽  
Author(s):  
Juliana Abdallah Atoui ◽  
Daniela Nair Borges Felipucci ◽  
Valeria Oliveira Pagnano ◽  
Iara Augusta Orsi ◽  
Mauro Antonio de Arruda Nobilo ◽  
...  

This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84±19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90±37.76; laser=515.85±62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations.


Today’s world is always leads to development in technology as well as the economic growth though sometime these will affect the environment badly. That’s why world environmental commission coined the termed called sustainable development where development takes place without hampering the others’ needs. Concrete industry is rapidly growing industry in India which consumes lots of natural resources during the production of concrete. Here Stone dust is used as a sustainable material in place of sand partially. M25 grade of concrete has been chosen for the experiments. Different mechanical properties of concrete like compressive strength, Split tensile, flexural strength etc. and Microstructural features like SEM, EDX have been included in this study. Compressive Strength and flexural strength test results shown the increase in the strength. Sulphate Resistance Properties have been tested by curing the cubes in the MgSO4 solution and increase in weight has been observed. Similarities are found in the SEM pictures


2020 ◽  
Vol 11 (2) ◽  
pp. 221-246
Author(s):  
Ghasem Pachideh ◽  
Majid Gholhaki

Purpose With respect to the studies conducted so far and lack of researches on the post-heat behavior of cement mortars containing pozzolanic materials, the purpose of this paper is to investigate the post-heat mechanical characteristics (i.e. compressive, tensile and flexural strength) of cement mortars containing granulated blast-furnace slag (GBFS) and silica fume (SF). In doing so, selected temperatures include 25, 100, 250, 500, 700 and 9000c. Last, the X-ray diffraction test was conducted to study the microstructure of mixtures and subsequently, the results were presented as power-one mathematical relations. Design/methodology/approach Totally, 378 specimens were built to conduct flexural, compressive and tensile strength tests. Accordingly, these specimens include cubic and prismatic specimens with dimensions of 5 × 5 × 5 cm and 16 × 4 × 4 cm, respectively, to conduct compressive and flexural strength tests together with briquette specimen used for tensile strength test in which cement was replaced by 7, 14 and 21 per cent of SF and GBFS. To study the effect of temperature, the specimens were heated. In this respect, they were heated with a rate of 5°C/min and exposed to temperatures of 25 (ordinary temperature), 100, 250, 500, 700 and 900°C. Findings On the basis of the results, the most profound effect of using GBFS and SF, respectively, takes place in low (up to 250°C) and high (500°C and greater degrees) temperatures. Quantitatively, the compressive, tensile and flexural strengths were enhanced by 73 and 180 per cent, 45 and 100 per cent, 106 and 112 per cent, respectively, in low and high temperatures. In addition, as the temperature elevates, the particles of specimens containing SF and GBFS shrink less in size compared to the reference specimen. Originality/value The specimens were cured according to ASTMC192 after 28 days placement in the water basin. First, in compliance with what has been specified by the mix design, the mortar, including pozzolanic materials and superplasticizer, was prepared and then, the sampling procedure was conducted on cubic specimens with dimension of 5 × 5 × 5 mm for compressive strength test, prismatic specimens with dimensions of 16 × 4 × 4 mm for flexural strength test and last, briquette specimens were provided to conduct tensile strength tests (for each temperature and every test, three specimens were built).


Author(s):  
Ilham I. Mohammed

Sinceasphalt concrete undergo different failure problems at different temperature and moisture conditions and for years many scientists and researchers used different kinds of materials and variety of methods for improving the properties of asphalt concrete made with either basalt or limestone.So it became necessary to provide the best possible way to get rid of these failure problems.In this study diluted zycotherm nanomaterial at three different percentages by weight of aggregate used with two aggregate types, basalt and limestone, and asphalt concrete made with the marinated aggregate and later the properties of asphalt concrete were investigated after the marination.Indirect tensile strength test and retained stability test results were used to evaluate the marinating effect.As a result zycotherm dilution by weight of aggregate has changed the properties of asphalt mixture and improved to a great extent. From the results it can be concluded that rutting and fatigue problems decreased with a great range.


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Sarito Sarito ◽  
Muhtarom Riyadi ◽  
Handi Sudardja

ABSTRACTMechanic characteristics of hard mortar are: compressive strength, flexural strength, tensile strength, and adhesion power. In the meantime, at Building Material Laboratory of Civil Engineering, State Polytechnic of Jakarta, test of tensile strength and adhesion power of mortar cannot be conducted because of the absence of the test equipment.This research aims to provide electric motor-powered equipment for tensile strength test of mortar in order to complete the equipment at Building Material Laboratory of Civil Engineering, State Polytechnic of Jakarta. The particular aim of the research is to make prototype of mortar tensile strength test equipment.In this research a prototype of motor-powered mortar tensile strength test equipment and the specimens, to test the performance of the equipment, were prepared. By examining the obstacles and shortcomings, this equipment is a development of the previous research by Muhtarom Riyadi and the team, 2015. The specimens, as the sample to test the equipment, were prepared by the ratio of one part of cement and three part of fine aggregate, with the total number of the specimens of 50 pieces.By analyzing the result of observation in trial period, the equipment could function as it should be. The magnitude of maximum tensile strength that causes the mortar specimens to break depends on the quality, age, and tensile area of mortar, which magnitude can be observed in manometer or scale with the unit of kilogram.Keywords: equipment, tensile, mortar, electric motorABSTRAKSifat mekanis mortar keras antara lain kuat tekan, kuat lentur, kuat tarik dan daya lekat. Sementara ini di Laboratorium bahan bangunan Jurusan Teknik Sipil Politeknik Negeri Jakarta untuk uji kuat tarik dan daya lekat mortar belum bisa dilaksanakan karena belum adanya peralatan untuk melakukan pengujian.Penelitian ini bertujuan untuk membuat alat uji tarik mortar menggunakan tenaga penggerak motor listrik guna melengkapi peralatan yang diperlukan di Laboratorium bahan bangunan Jurusan Teknik Sipil Politeknik Negeri Jakarta. Target khusus yang ingin dicapai adalah membuat prototype alat uji tarik mortar.Dalam penelitian ini akan dibuat prototipe alat uji tarik mortar menggunakan tenaga motor listrik dan cetakan benda ujinya, sekaligus untuk menguji kinerjanya. Alat ini merupakan pengembangan oleh peneliti yang terdahulu Muhtarom Riyadi dan anggotanya, 2015), dengan mencermati kendala dan kekurangannya maka penelitian ini merupakan penyempurnaan penelitian sebelumnya Sebagai sampelnya dibuat benda uji tarik mortar dengan perbandingan 1 bagian semen berbanding 3 bagian pasir, sedangkan jumlah benda uji dibuat sebanyak 50 buah.Hasil pengamatan selama uji coba maka alat alat uji tarik mortar menggunakan tenaga penggerak motor listrik dapat berfungsi sebagaimana mestinya. Besarnya gaya tarik maksimum yang menjadikan benda uji tarik mortar putus tergantung dari mutu mortar, umur serta luas penampang tarik yang nilainya dapat diamatai pada manometer atau timbangan berat dengan satuan kilogramKata kunci : Alat, uji, tarik, mortar, motor listrik


2021 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Mazhar Hussain ◽  
Daniel Levacher ◽  
Léo Saouti ◽  
Nathalie Leblanc ◽  
Hafida Zmamou ◽  
...  

Earth bricks are a traditional eco-friendly construction material. In this study, harbor-dredged sediments were used along with hemp shiv to develop a brick manufacturing procedure and compaction techniques to produce durable earth bricks for the valorization of waste hemp shiv and dredged sediments. Prismatic specimens of size 4 × 4 × 16 cm3 were manufactured with Dunkirk sediments after analyzing their suitability for earth bricks according to the French standard for flexural strength test to observe the indirect tensile strength and impact of the compaction techniques on the strength of bricks. Crude bricks were manufactured with varying hemp shiv content from 0% to 5% by mass. Compaction techniques such as dynamic compaction, static compaction, and tamping were applied. The effect of hemp shiv content and compaction techniques was evaluated with a flexural strength test and the distribution of fibers in bricks. Grain size analysis of sediments with French and Spanish standards shows that the sediments granulometry is suitable for earth bricks. The flexural strength testing of bricks indicates that bricks with saturated hemp shiv have higher flexural strength. Earth bricks have maximum strength with dynamic compaction with 1% hemp shiv, which satisfies the adobe bricks tensile strength requirements that vary from 0.012 to 0.025 MPa (NZS 4298, 1998; NORMA E.080 (2017).


1972 ◽  
Vol 4 (2) ◽  
pp. 159-162
Author(s):  
V. K. Adamovich ◽  
Yu. N. Panichkin

2019 ◽  
Vol 8 (3) ◽  
pp. 7736-7739 ◽  

This paper studies the effect of incorporating metakaolin on the mechanical properties of high grade concrete. Three different metakaolins calcined at different temperature and durations were used to make concrete specimens. Three different concrete mixtures were characterized using 20% metakaolin in place of cement. A normal concrete mix was also made for comparison purpose. The compressive strength test, split tensile test and flexural strength tests were conducted on the specimens. The compressive strength test results showed that all the metakaolin incorporated concrete specimens exhibited higher compressive strength and performed better than normal concrete at all the days of curing. The rate of strength development of all the mixes was also studied. The study revealed that all the three different metakaolin incorporated mixtures had different rate of strength development for all the days of hydration (3, 7,14, 28, 56 and 90), indicating that all the metakaolins possessed different rate of pozzolanic reactivity. Further, from the analysis of the test results, it was concluded that the variation in the rate of strength development is due to the differences in the temperature and duration at which they were manufactured. The results of split tensile strength test and the flexural strength test conducted on the specimens, supported the conclusions drawn from the results of compressive strength test. The paper also discusses, the rate of development of compressive strength and the pozzolanic behaviour of the metakaolins in light of their parameters of calcination and physical properties such as amorphousness and particle size. This paper has been written with a view to make the potential of metakaolin available to the construction industry at large


Sign in / Sign up

Export Citation Format

Share Document