scholarly journals Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration

2019 ◽  
Vol 10 (1) ◽  
pp. 3 ◽  
Author(s):  
Giorgio Iviglia ◽  
Saeid Kargozar ◽  
Francesco Baino

Periodontal diseases involve injuries to the supporting structures of the tooth and, if left untreated, can lead to the loss of the tooth. Regenerative periodontal therapies aim, ideally, at healing all the damaged periodontal tissues and represent a significant clinical and societal challenge for the current ageing population. This review provides a picture of the currently-used biomaterials for periodontal regeneration, including natural and synthetic polymers, bioceramics (e.g., calcium phosphates and bioactive glasses), and composites. Bioactive materials aim at promoting the regeneration of new healthy tissue. Polymers are often used as barrier materials in guided tissue regeneration strategies and are suitable both to exclude epithelial down-growth and to allow periodontal ligament and alveolar bone cells to repopulate the defect. The problems related to the barrier postoperative collapse can be solved by using a combination of polymeric membranes and grafting materials. Advantages and drawbacks associated with the incorporation of growth factors and nanomaterials in periodontal scaffolds are also discussed, along with the development of multifunctional and multilayer implants. Tissue-engineering strategies based on functionally-graded scaffolds are expected to play an ever-increasing role in the management of periodontal defects.

Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 537 ◽  
Author(s):  
Jin Liu ◽  
Jianping Ruan ◽  
Michael D. Weir ◽  
Ke Ren ◽  
Abraham Schneider ◽  
...  

Periodontitis is a prevalent infectious disease worldwide, causing the damage of periodontal support tissues, which can eventually lead to tooth loss. The goal of periodontal treatment is to control the infections and reconstruct the structure and function of periodontal tissues including cementum, periodontal ligament (PDL) fibers, and bone. The regeneration of these three types of tissues, including the re-formation of the oriented PDL fibers to be attached firmly to the new cementum and alveolar bone, remains a major challenge. This article represents the first systematic review on the cutting-edge researches on the regeneration of all three types of periodontal tissues and the simultaneous regeneration of the entire bone-PDL-cementum complex, via stem cells, bio-printing, gene therapy, and layered bio-mimetic technologies. This article primarily includes bone regeneration; PDL regeneration; cementum regeneration; endogenous cell-homing and host-mobilized stem cells; 3D bio-printing and generation of the oriented PDL fibers; gene therapy-based approaches for periodontal regeneration; regenerating the bone-PDL-cementum complex via layered materials and cells. These novel developments in stem cell technology and bioactive and bio-mimetic scaffolds are highly promising to substantially enhance the periodontal regeneration including both hard and soft tissues, with applicability to other therapies in the oral and maxillofacial region.


2020 ◽  
Vol 10 (02) ◽  
pp. 68-73
Author(s):  
Avaneendra Talwar ◽  
Reshma Amin

Abstract Introduction The alveolar bone, periodontal ligament (PDL), and cementum are the integral structural components invariably subject to changes during periodontal diseases. Many documents on animal and human studies state that the polypeptide growth factors (GFs) have a role in periodontal regeneration. The platelet-rich fibrin (PRF) is in use since the last decade. It has the potential of delivering GFs into vertical osseous defects. Human platelets contain platelet-derived growth factor and transforming growth factor-β in their α granules. These GFs are involved in wound healing and act as promoters of tissue regeneration. The study aimed to obtain histologic evidence, if any, of new attachment in humans, following treatment of osseous defects with 10-1055-s-0040-1714651_00084_ (HA) and PRF mix. Materials and Methods Five maxillary molar teeth with advanced bone loss were treated with porous 10-1055-s-0040-1714651_00084_ (PHA) mixed with PRF. Distobuccal roots were resected and studied histologically for evidence of bone formation, if any, at 1st, 3rd, and the 5th months. Results The PHA was completely resorbed in all the specimens. There was definitive evidence of bone formation at the 3rd month itself with mature lamellar bone with resting and reversal lines at the fifth postoperative month. There was no evidence of new cementum or PDL formation. Conclusion PRF in conjunction with osteoconductive materials prove to accelerate bone formation in vertical osseous defects.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4802
Author(s):  
Min Guk Kim ◽  
Chan Ho Park

The mineralized tissues (alveolar bone and cementum) are the major components of periodontal tissues and play a critical role to anchor periodontal ligament (PDL) to tooth-root surfaces. The integrated multiple tissues could generate biological or physiological responses to transmitted biomechanical forces by mastication or occlusion. However, due to periodontitis or traumatic injuries, affect destruction or progressive damage of periodontal hard tissues including PDL could be affected and consequently lead to tooth loss. Conventional tissue engineering approaches have been developed to regenerate or repair periodontium but, engineered periodontal tissue formation is still challenging because there are still limitations to control spatial compartmentalization for individual tissues and provide optimal 3D constructs for tooth-supporting tissue regeneration and maturation. Here, we present the recently developed strategies to induce osteogenesis and cementogenesis by the fabrication of 3D architectures or the chemical modifications of biopolymeric materials. These techniques in tooth-supporting hard tissue engineering are highly promising to promote the periodontal regeneration and advance the interfacial tissue formation for tissue integrations of PDL fibrous connective tissue bundles (alveolar bone-to-PDL or PDL-to-cementum) for functioning restorations of the periodontal complex.


2014 ◽  
Vol 124 (2) ◽  
pp. 86-88
Author(s):  
Małgorzata Stodókiewicz ◽  
Joanna Krawczyk ◽  
Jacek Szkutnik ◽  
Marcin Berger

Abstract Introduction. Periodontitis is a group of inflammatory disorders affecting periodontal tissues. This condition manifests by a progressive destruction of the alveolar bone, subsequently leading to tooth loss. World Health Organization introduced Community Periodontal Index of Treatment Needs in order to gain data regarding periodontal health and treatment needs of people with periodontitis Aim. To evaluate the periodontal status of citizens living in the city of Lublin and its surrounding, using Community Periodontal Index of Treatment Needs (CPITN). Material and methods. Community Periodontal Index of Treatment Needs was used to assess the periodontal status among 180 patients aged 35-44 residing in Lublin and the area around it. Results. Periodontal diseases have been observed in over 90% of the examined population. Treatment need index TN1 has referred to 26.11% of the patients, TN2 – 61.67% and TN3 – 2.22% respectively. Conclusions. Patients who visit the dentist regularly have a better periodontal status as compared to groups randomly selected.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2185
Author(s):  
Anna Gościniak ◽  
Magdalena Paczkowska-Walendowska ◽  
Agnieszka Skotnicka ◽  
Marek A. Ruchała ◽  
Judyta Cielecka-Piontek

Periodontal diseases are one of the most significant challenges in dental health. It is estimated that only a few percent of the worldwide population have entirely healthy teeth, and according to WHO, oral diseases may affect up to 3.5 billion people worldwide. One of the most serious oral diseases is periodontitis, an inflammatory disease affecting periodontal tissues, caused by pathogenic bacteria and environmental factors such as the ageing population, abuse of tobacco products, and lack of adequate oral hygiene due low public awareness. Plant materials are widely and successfully used in the management of many conditions, including periodontitis. Plant materials for periodontitis exhibit antibacterial, anti-inflammatory, antioxidant activities and affect the periodontium structure. Numerous studies demonstrate the advantages of phytotherapy for periodontitis relief and indicate the usefulness of Baikal skullcap root, Pomegranate fruit peel and root cortex, Tea leaves, Chamomile flowers, Magnolia bark, Blackberry leaves and fruits, Cranberry fruits and Lippia sidoides essential oil. This review aims to analyze the use and applicability of selected plant materials in periodontitis management since it is of paramount importance to evaluate the evidence of the traditionally used plant materials in light of continuously growing interest in phytotherapy and its adjuvant role in the treatment of periodontitis.


2020 ◽  
Vol 49 (5) ◽  
pp. 20190197
Author(s):  
Murat Icen ◽  
Kaan Orhan ◽  
Çiğdem Şeker ◽  
Gediz Geduk ◽  
Fethiye Cakmak Özlü ◽  
...  

Objectives: This study aimed to compare the diagnostic accuracy of cone beam CT (CBCT) units with different voxel sizes with the digital intraoral scanning technique in terms of the detection of periodontal defects. Methods and materials: The study material comprised of 12 dry skulls with maxilla and mandible. Artificial defects were created on teeth separately using burs randomly on dry skulls. In total 46 dehiscences, 10 fenestrations, 17 furcations, 12 wall defects and 13 without periodontal defect were used in the study. Each tooth with and without defects was imaged at various vertical angles using each of the following modalities: a Veraviewepocs 3D R100 CBCT device and a 3D Shape TRIOSㄾ Color P13 Shade Intraoral Scanner. Results: The κ values for interobserver agreement between observers ranged between 0.29 and 0.86 for the CBCT 10 × 8 cm field of view (FOV) with 0,160 mm3 voxel size; 0.35 and 1 for the CBCT 8 × 8 cm FOV with 0,125 mm3 voxel size; and 0.30 and 1 of intraoral scans. The κ values for detecting defects on anterior teeth were the least, following premolar and molar teeth both CBCT and intraoral scanning. Conclusions: Smaller voxel sizes and smaller CBCT FOV has the highest sensitivity and diagnostic accuracy for detecting various periodontal defects among the scanner modalities examined. Advances in knowledge: Adequate evaluation of the condition of the alveolar bone and periodontal tissues is important for the diagnosis, treatment, and prognosis of periodontal disease. Limited examination methods, such as palpation, inspection, and periodontal probe examination, may provide insufficient information for the diagnosis of periodontal diseases.


2021 ◽  
Vol 42 ◽  
pp. 139-153
Author(s):  
BQ Le ◽  
◽  
JH Too ◽  
TC Tan ◽  
RAA Smith ◽  
...  

Periodontitis is the most common inflammatory disease that leads to periodontal defects and tooth loss. Regeneration of alveolar bone and soft tissue in periodontal defects is highly desirable but remains challenging. A heparan sulphate variant (HS3) with enhanced affinity for bone morphogenetic protein-2 (BMP2) that, when combined with collagen or ceramic biomaterials, enhances bone tissue regeneration in the axial and cranial skeleton in several animal models was reported previously. In the current study, establishing the efficacy of a collagen/HS3 device for the regeneration of alveolar bone and the adjacent periodontal apparatus and related structures was sought. Collagen sponges loaded with phosphate-buffered saline, HS3, BMP2, or HS3 + BMP2 were implanted into surgically-created intra-bony periodontal defects in rat maxillae. At the 6 week end- point the maxillae were decalcified, and the extent of tissue regeneration determined by histomorphometrical analysis. The combination of collagen/HS3, collagen/BMP2 or collagen/HS3 + BMP2 resulted in a three to four-fold increase in bone regeneration and up to a 1.5 × improvement in functional ligament restoration compared to collagen alone. Moreover, the combination of collagen/HS3 + BMP2 improved the alveolar bone height and reduced the amount of epithelial growth in the apical direction. The implantation of a collagen/ HS3 combination device enhanced the regeneration of alveolar bone and associated periodontal tissues at amounts comparable to collagen in combination with the osteogenic factor BMP2. This study highlights the efficacy of a collagen/HS3 combination device for periodontal regeneration that warrants further development as a point-of-care treatment for periodontitis-related bone and soft tissue loss.


2019 ◽  
Vol 42 (5) ◽  
pp. 241-257 ◽  
Author(s):  
Daniela Carmagnola ◽  
Gaia Pellegrini ◽  
Claudia Dellavia ◽  
Lia Rimondini ◽  
Elena Varoni

Teeth and the periodontal tissues represent a highly specialized functional system. When periodontal disease occurs, the periodontal complex, composed by alveolar bone, root cementum, periodontal ligament, and gingiva, can be lost. Periodontal regenerative medicine aims at recovering damaged periodontal tissues and their functions by different means, including the interaction of bioactive molecules, cells, and scaffolds. The application of growth factors, in particular, into periodontal defects has shown encouraging effects, driving the wound healing toward the full, multi-tissue periodontal regeneration, in a precise temporal and spatial order. The aim of the present comprehensive review is to update the state of the art concerning tissue engineering in periodontology, focusing on biological mediators and gene therapy.


2011 ◽  
Vol 90 (12) ◽  
pp. 1416-1421 ◽  
Author(s):  
K.B. Emerton ◽  
S.J. Drapeau ◽  
H. Prasad ◽  
M. Rohrer ◽  
P. Roffe ◽  
...  

The application of growth factors has been advocated in support of periodontal regeneration. Recombinant human growth and differentiation factor-5 (rhGDF-5), a member of the bone morphogenetic protein family, has been used to encourage periodontal tissue regeneration. This study evaluated the dose response of rhGDF-5 lyophilized onto beta-tricalcium phosphate (bTCP) granules for periodontal tissue regeneration in a baboon model. Periodontal defects were created bilaterally in 12 baboons by a split-mouth design. Plaque was allowed to accumulate around wire ligatures to create chronic disease. After 2 mos, the ligatures were removed, and a notch was placed at the base of the defect. Two teeth on each side of the mouth were randomly treated with bTCP only, 0.5, 1.0, or 2.0 mg rhGDF-5/g bTCP. Animals were sacrificed 5 mos post-treatment, with micro-CT and histomorphometric analysis performed. After 5 mos, analysis showed alveolar bone, cementum, and periodontal ligament formation in all treatment groups, with a dose-dependent increase in rhGDF-5-treated groups. Height of periodontal tissues also increased with the addition of rhGDF-5, and the amount of residual graft material decreased with rhGDF-5 treatment. Therefore, rhGDF-5 delivered on bTCP demonstrated effective regeneration of all 3 tissues critical for periodontal repair.


2021 ◽  
Vol 13 (4) ◽  
pp. 288-292
Author(s):  
Kahon Chakraborty ◽  
Sachin S Shivanaikar ◽  
Darsha Jain

Periodontitis is a multifactorial chronic inflammatory disease of the periodontium that destroys periodontium due to the exaggeration of the host immune responses to the disease-causing perio-pathogens, resulting in attachment loss and bone loss, eventually leading to loss of the tooth. Various advancements in modalities of treatment of periodontal disease have occurred in the past few years to overcome the disadvantages of traditional periodontal therapies as well as to improve the clinical outcomes. The Tri-Immuno – phasic periodontal (TIP) therapy is one such new technique developed by William Hoisington which is a minimally invasive, efficient, safe, and less traumatic alternative technique for treating periodontal diseases. TIP therapy is based on the fact that periodontal tissues heal in the same way as other parts of the human body. TIP therapy is an aerobic method of treating periodontal diseases that modulates various phases of the host immune system to eliminate the perio-pathogens and form a new attachment, and also attempts to regenerate the alveolar bone. The TIP therapy method includes - Bone One Session Treatment (BOST), controlling the occlusal forces, oral hygiene reinforcement with adjuvant modalities, lifestyle modifications, enhancing nutrition, and exercise.


Sign in / Sign up

Export Citation Format

Share Document