scholarly journals Superpixel Segmentation Based on Anisotropic Edge Strength

2019 ◽  
Vol 5 (6) ◽  
pp. 57 ◽  
Author(s):  
Gang Wang ◽  
Bernard De Baets

Superpixel segmentation can benefit from the use of an appropriate method to measure edge strength. In this paper, we present such a method based on the first derivative of anisotropic Gaussian kernels. The kernels can capture the position, direction, prominence, and scale of the edge to be detected. We incorporate the anisotropic edge strength into the distance measure between neighboring superpixels, thereby improving the performance of an existing graph-based superpixel segmentation method. Experimental results validate the superiority of our method in generating superpixels over the competing methods. It is also illustrated that the proposed superpixel segmentation method can facilitate subsequent saliency detection.

2019 ◽  
Vol 9 (5) ◽  
pp. 906 ◽  
Author(s):  
Xuefeng Yi ◽  
Rongchun Zhang ◽  
Hao Li ◽  
Yuanyuan Chen

Multi-Source RS data integration is a crucial technology for rock surface extraction in geology. Both Terrestrial laser scanning (TLS) and Photogrammetry are primary non-contact active measurement techniques. In order to extract comprehensive and accurate rock surface information by the integration of TLS point cloud and digital images, the segmentation based on the integrated results generated by registration is the crux. This paper presents a Multi-Features Fusion for Simple Linear Iterative Clustering (MFF-SLIC) hybrid superpixel segmentation algorithm to extract the rock surface accurately. The MFF-SLIC algorithm mainly includes three contents: (1) Mapping relationship construction for TLS point cloud and digital images; (2) Distance measure model establishment with multi-features for initial superpixel segmentation; (3) Hierarchical and optimized clustering for superpixels. The proposed method was verified with the columnar basalt data, which is acquired in Guabushan Geopark in China. The results demonstrate that the segmentation method could be used for rock surface extraction with high precision and efficiency, the result of which would be prepared for further geological statistics and analysis.


2013 ◽  
Vol 860-863 ◽  
pp. 2783-2786
Author(s):  
Yu Bing Dong ◽  
Hai Yan Wang ◽  
Ming Jing Li

Edge detection and thresholding segmentation algorithms are presented and tested with variety of grayscale images in different fields. In order to analyze and evaluate the quality of image segmentation, Root Mean Square Error is used. The smaller error value is, the better image segmentation effect is. The experimental results show that a segmentation method is not suitable for all images segmentation.


Author(s):  
Monika Singh ◽  
Anand Singh Singh Jalal ◽  
Ruchira Manke ◽  
Aamir Khan

Saliency detection has always been a challenging and interesting research area for researchers. The existing methodologies either focus on foreground regions or background regions of an image by computing low-level features. However, considering only low-level features did not produce worthy results. In this paper, low-level features, which are extracted using super pixels, are embodied with high-level priors. The background features are assumed as the low-level prior due to the similarity in the background areas and boundary of an image which are interconnected and have minimum distance in between them. High-level priors such as location, color, and semantic prior are incorporated with low-level prior to spotlight the salient area in the image. The experimental results illustrate that the proposed approach outperform the sate-of-the-art methods.


2019 ◽  
Vol 13 ◽  
pp. 174830261984578 ◽  
Author(s):  
Yapin Wang ◽  
Yiping Cao

The accuracy of the leukocyte nucleus segmentation is an important preprocessing step in the leukocyte automatic analysis. However, different dyeing conditions or different illumination conditions may cause capturing different color leukocyte images in microscopic imaging system, which will result in the over-segmentation or under-segmentation of the leukocyte nucleus. A leukocyte nucleus segmentation method based on enhancing the saliency of the saturation component is proposed. While applying the set of calibration offset values [Formula: see text], [Formula: see text], and [Formula: see text] of the red (R), green (G), and blue (B) chrominance value on the blood smear microscopic images, it can enhance the saliency of the saturation component and the saliency of the leukocyte nucleus region increases the most obviously. The leukocyte nuclei are then segmented using Otsu’s histogram thresholding method. The experimental results show that the proposed algorithm outperforms the related algorithms in segmentation accuracy, over-segmentation rate, error rate, and relative distance error. It improves the accuracy, robustness, and universality further.


2012 ◽  
Vol 217-219 ◽  
pp. 1964-1967
Author(s):  
Tong Tong ◽  
Yan Cai ◽  
Da Wei Sun ◽  
Peng Liu

In allusion to the complex images of weld defects, weak contrast between the target and the background, a new segmentation method based on gray level difference transition region extraction is proposed. The paper analyzes the characteristic of weld defects, and then low-pass filtering and contrast enhanced are used to enhance the clarity. Finally, we extract the transition region and confirm a threshold for defects segmentation. The experimental results show that the method can extract the transition region more accurate, and segment the image much better in complex environment.


2012 ◽  
Vol 155-156 ◽  
pp. 861-866 ◽  
Author(s):  
Bei Ji Zou ◽  
Hao Yu Zhou ◽  
Zai Liang Chen ◽  
Hao Chen ◽  
Guo Jiang Xin

A new welding seam image segmentation method based on pulse-coupled neural network (PCNN) is presented in this paper. The method segments image by utilizing PCNN’s specific feature that the fire of one neuron can capture firing of its adjacent neurons due to their spatial proximity and intensity similarity. The method can automatically confirm the best iteration times by comparing the maximum of variance ratio and get the best segmentation results. Experimental results show that the proposed method has good performance in both results and execution efficiency.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Meng Li ◽  
Yi Zhan ◽  
Lidan Zhang

We present a nonlocal variational model for saliency detection from still images, from which various features for visual attention can be detected by minimizing the energy functional. The associated Euler-Lagrange equation is a nonlocalp-Laplacian type diffusion equation with two reaction terms, and it is a nonlinear diffusion. The main advantage of our method is that it provides flexible and intuitive control over the detecting procedure by the temporal evolution of the Euler-Lagrange equation. Experimental results on various images show that our model can better make background details diminish eventually while luxuriant subtle details in foreground are preserved very well.


Author(s):  
P. ZAMPERONI

The aim of this paper is to outline a unified approach to feature extraction for segmentation purposes by means of the rank-order filtering of grey values in a neighbourhood of each pixel of a digitized image. In the first section an overview of rank-order filtering for image processing is given, and a fast histogram algorithm is proposed. Section 2 deals with the extraction of a “locally most representative grey value”, defined as the maximum of the local histogram density function. In Section 3 several textural features are described, which can be extracted from the local histogram by means of rank-order filtering, and their properties are discussed. Section 4 formulates some general requirements to be met by the process of image segmentation, and describes a method based upon the features introduced in the former sections. In the last section some experimental results applied to aerial views obtained with the segmentation method of Sect. 4 are reported. These test images have been analyzed within the scope of an investigation centered on terrain recognition for agricultural and ecological purposes.


Author(s):  
M. Li ◽  
H. Zou ◽  
Q. Ma ◽  
J. Sun ◽  
X. Cao ◽  
...  

Abstract. Superpixel segmentation for PolSAR images can heavily decrease the number of primitives for subsequent interpretation while reducing the impact of speckle noise. However, traditional superpixel segmentation methods for PolSAR images only focus on the boundary adherence, the significance of superpixel segmentation will be lost when the accuracy is improved at the expense of computation efficiency. To solve this problem, this paper proposes a novel superpixel segmentation algorithm for PolSAR images based on hexagon initialization and edge refinement. First, the PolSAR image is initialized as hexagonal distribution, where the complexity of searching pixels for relabelling in the local regions can be reduced by 30% theoretically. Second, all pixels in the PolSAR image are initialized as unstable pixels based on the hexagonal superpixels, which can boost the segmentation performance in the heterogeneous regions and effectively maintain all the potential edge pixels. Third, the revised Wishart distance and the spatial distance are integrated as a distance measure to relabel all unstable pixels. Finally, the postprocessing procedure based on a dissimilarity measure is applied to generate the final superpixels. Extensive experiments conducted on both the simulated and real-world PolSAR images demonstrate the superiority and effectiveness of our proposed algorithm in terms of computation efficiency and segmentation accuracy, compared to three other state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document