scholarly journals Review of Top-Down Method to Determine Atmospheric Emissions in Port. Case of Study: Port of Veracruz, Mexico

2022 ◽  
Vol 10 (1) ◽  
pp. 96
Author(s):  
Gilberto Fuentes García ◽  
Rodolfo Sosa Echeverría ◽  
José María Baldasano Recio ◽  
Jonathan D. W. Kahl ◽  
Rafael Esteban Antonio Durán

Indicators of environmental policies in force in Mexico, fossil fuels will continue to be used in industrial sectors, especially marine fuels, such as marine diesel oil, in port systems for some time. Considering this, we have evaluated several methods corresponding to a top-down system for determining fuel consumption and sulfur dioxide atmospheric emissions for the port of Veracruz in 2020 by type of ship on a daily resolution, considering a sulfur content of 0.5% mass by mass in marine fuel. After analyzing seven methods for determining sulfur dioxide atmospheric emission levels, Goldsworthy’s method was found to be the best option to characterize this port. The port system has two maritime zones, one of which is in expansion, which represented 55.66% of fuel consumption and 23.05% of atmospheric emissions according to the typology of vessels. We found that higher fuel consumption corresponded to container vessels, and tanker vessels represented higher atmospheric emission levels in the berthing position. The main differences that we found in the analysis of the seven methods of the top-down system corresponded to the load factor parameter, main and auxiliary engine power, and estimation of fuel consumption by type of vessel.

2021 ◽  
Vol 9 (11) ◽  
pp. 1186
Author(s):  
Gilberto Fuentes Fuentes García ◽  
Rodolfo Sosa Sosa Echeverría ◽  
José María Baldasano Baldasano Recio ◽  
Jonathan D. W. W. Kahl ◽  
Elías Granados Granados Hernández ◽  
...  

Atmospheric emissions from vessels at 38 Pacific and Gulf-Caribbean Mexican ports were determined for nitrogen oxides, sulfur dioxide, particulates, carbon monoxide, non-methane volatile organic compounds, and carbon dioxide. The emissions have been estimated using a bottom-up methodology in the maneuver and hoteling phases, by vessel type, from 2005 to 2020. Maritime traffic in Mexico’s Pacific zone contributes approximately with 60% of the country’s total ship emissions, with the remaining 40% in Gulf-Caribbean ports. The highest atmospheric emissions were found at the Manzanillo and Lázaro Cárdenas ports on the Pacific coast, as well as the Altamira and Veracruz ports on the Gulf-Caribbean coast. The contribution of the atmospheric emissions by vessel type at Pacific ports was Container 67%, Bulk Carrier 32%, Tanker 0.8%, and RoRo 0.4%. For Gulf-Caribbean ports it was Container 76%, Bulk Carrier 19%, Tanker 3%, and RoRo 2%. This study incorporates the International Maritime Organization implementations on reductions of sulfur content in marine fuel, from 4.5% mass by mass from 2005 to 2011, to 3.5% from 2012 to 2019, to 0.5% beginning in 2020. Overall, sulfur dioxide emissions were reduced by 89%.


2008 ◽  
Vol 35 (1) ◽  
pp. 95-106 ◽  
Author(s):  
J. Nikiema ◽  
M. Heitz

Biodiesel, a fuel derived from animal or vegetable oil and fats, is presented in this paper. More specifically, its physico-chemical properties as well as the raw materials and existing standards are described. The advantages, limitations, and future of biodiesel are discussed. Biodiesel offers significant environmental advantages over petrodiesel: its combustion produces fewer atmospheric emissions of pollutants and greenhouse gases; in addition, it biodegrades easily and does not present a major risk during storage. On the other hand, the substitution of biodiesel for petrodiesel usually causes an increase in fuel consumption by engines. In addition, according to various estimates, the price of biodiesel is higher than that of petrodiesel. Nevertheless, biodiesel is easy to produce and, with the anticipated decline in stocks of fossil fuels, it constitutes an interesting substitute that should become increasingly used in the next decade.


2019 ◽  
Vol 40 (1) ◽  
pp. 7
Author(s):  
Marcelo Silveira de Farias ◽  
José Fernando Schlosser ◽  
Javier Solis Estrada ◽  
Gismael Francisco Perin ◽  
Alfran Tellechea Martini

The growing global demand of energy, the decrease of petroleum reserves and the current of environmental contamination problems, make it imperative to study renewable energy sources for use in internal combustion engines, in order to decrease the dependence on fossil fuels and reduce emissions of pollutant gases. This study aimed to evaluate the emissions of a diesel-cycle engine of an agricultural tractor that uses diesel S500 (B5) mixed with 3, 6, 9, 12 and 15% of hydrous ethanol. It determined emissions of CO2 (ppm), NOx (ppm), and opacity (k value) of gases. A standard procedure was applied considering eight operating modes (M1, M2, M3, M4, M5, M6, M7, and M8) by breaking with an electric dynamometer in a laboratory. The experimental design was completely randomized, with 60 replicates and a 6 x 8 factorial design. Greater opacity and gas emissions were observed when the engine operated with 3% ethanol, while lower emissions occurred with 12 and 15%. With these fuels, the reduction of opacity, CO2, and NOx, in relation to diesel oil, was 24.49 and 26.53%, 4.96 and 5.15%, and 6.59 and 9.70%, respectively. In conclusion, the addition of 12 and 15% ethanol in diesel oil significantly reduces engine emissions.


2017 ◽  
Vol 10 (2) ◽  
pp. 93 ◽  
Author(s):  
Anh Tuan Hoang

Pure vegetable oils have the greatest promise for alternative fuels for internal combustion engines beside the depletion of conventional petroleum resources. Among various possible options, pure vegetable oils present promising of greener air substitutes for fossil fuels. Pure vegetable oils, due to the agricultural origin, liquidity, ready availability, renewability, biodegradability are able to reduce the CO2 emissions in the atmosphere. Also, in Vietnam, pure vegetable oils such as soybean oil (SoO100), coconut oil (CO100) and sunflower oil (SuO100) are available. The paper presents the results of using heated pure vegetable oils for diesel engine D243 with power of 80 hp (58.88) kW. The results of determining the power (Ne), specific fuel consumption (SFC) and efficiency (n) are used to evaluate the performance of engine. The results show that, the engine power (Ne) is 10%-15% lower, the SFC of engine D243 using pure vegetable oils is 3%-5% higher and the η is 2.5%-6.2% lower compared to diesel oil (DO). Among the pure vegetable oils, the best performance results for D243 diesel engine are obtained from heated pure sunflower oil up to 135oC.


2019 ◽  
Vol 10 (3) ◽  
pp. 951
Author(s):  
Florian Ion Tiberiu Petrescu ◽  
Relly Victoria Virgil Petrescu

In this paper the authors present shortly an original method to make the dynamic synthesis of a mechanism with rotary cam and rotated tappet with roll, used with priority at the distribution mechanisms from the heat engines with internal combustion. This type of distribution can improve the changes of gases, and may decrease significantly the level of vibration, noises, and emissions. As long as we produce electricity and heat by burning fossil fuels is pointless to try to replace all thermal engines with electric motors, as loss of energy and pollution will be even larger. However, it is well to continuously improve the thermal engines, to reduce thus fuel consumption. At the heat engine with internal combustion a great loss of power is realized and by the distribution mechanism, reason for that we must try to improve the functionality of this mechanism. The dynamic synthesis of this type of distribution mechanism can be made shortly, by the Cartesian coordinates, but to determine these coordinates we need and some trigonometric parameters of the mechanism. Dynamics and forces of this distribution mechanism are presented as well. One introduce the dynamic coefficient D.


2021 ◽  
Vol 8 (1) ◽  
pp. H16-H20
Author(s):  
A.V.N.S. Kiran ◽  
B. Ramanjaneyulu ◽  
M. Lokanath M. ◽  
S. Nagendra ◽  
G.E. Balachander

An increase in fuel utilization to internal combustion engines, variation in gasoline price, reduction of the fossil fuels and natural resources, needs less carbon content in fuel to find an alternative fuel. This paper presents a comparative study of various gasoline blends in a single-cylinder two-stroke SI engine. The present experimental investigation with gasoline blends of butanol and propanol and magnesium partially stabilized zirconium (Mg-PSZ) as thermal barrier coating on piston crown of 100 µm. The samples of gasoline blends were blended with petrol in 1:4 ratios: 20 % of butanol and 80 % of gasoline; 20 % of propanol and 80 % of gasoline. In this work, the following engine characteristics of brake thermal efficiency (BTH), specific fuel consumption (SFC), HC, and CO emissions were measured for both coated and non-coated pistons. Experiments have shown that the thermal efficiency is increased by 2.2 % at P20. The specific fuel consumption is minimized by 2.2 % at P20. Exhaust emissions are minimized by 2.0 % of HC and 2.4 % of CO at B20. The results strongly indicate that the combination of thermal barrier coatings and gasoline blends can improve engine performance and reduce exhaust emissions.


2019 ◽  
Vol 4 (02) ◽  
pp. 113
Author(s):  
Melati Intan Kurnia ◽  
Hadi Sasana ◽  
Yustirania Septiani

<p><em>Increasing economic growth will spark against increased energy consumption. But on the other hand, increasing economic growth will also trigger the occurrence of natural damage and degradation of environmental quality derived from CO2 emissions. CO2 emissions are caused by oxidation process of fossil fuel energy. This research aims to know the causality relationship between CO2 emissions, fossil fuel consumption, electricity consumption, and economic growth in Indonesia, as well as long-term relationship between CO2 emissions, fossil fuel consumption, electricity consumption, to economic growth in Indonesia in 1990 – 2019. The used data is the secondary data that is in the form of data time series. The dependent variables of this study are economic growth, while independent variables are CO2 emissions, fossil fuel consumption, electricity consumption. The method that is used in this study is Vector Error Correction Model. The results showed that there was a one-way causality between economic growth and fossil fuel consumption, and between electricity consumption and CO2 emissions. The research also shows that on long-term CO2 emissions has a negative influence, while the consumption of fossil fuels and electricity has a positive effect on Indonesia's economic growth in 1990-2019.</em></p><p><strong><em>K</em></strong><strong><em>eywords</em></strong><em>: CO2, Energy Consumption, Economic Growth.</em></p>


2018 ◽  
Vol 6 (1) ◽  
pp. 455-462
Author(s):  
František Synák ◽  
Vladimír Rievaj ◽  
Monika Kiktová ◽  
Tomasz Figlus

The amount of fossil fuels consumed has direct impact on global pollution and health status of the human population. An increasing amount of fuel consumed leads to the increase using of non-renewable resources of energy. This article deals with possibilities of reducing the fuel consumption by covering the loading capacity of tipping semi-trailer. The introduction of this paper describes the impact the amount of fuel consumed on production of carbon dioxide. The ratio of driving resistances to fuel consumption is shown in the graph. In the second part of the article there is the methodology of the measurements. The measurements were conducted by driving test. The fuel consumption of tipping semi-trailer was measured during the driving with uncovered and covered loading capacity. The importance of this paper lies in the quantified the possibilities of reducing the fuel consumption by covering the loading capacity of tipping semi-trailer designed to carry bulk materials.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mehdi Jahangiri ◽  
Esther T. Akinlabi ◽  
Sam M. Sichilalu

Solar water heaters (SWHs) are one of the most effective plans for general and easy use of solar energy to supply hot water in domestic and industrial sectors. This paper gives the first-ever attempts to assess the optimal localization of SWHs across 22 major cities in Zambia, as well as determine the possibility of hot water generation and model the greenhouse gas (GHG) emission saving. The climate data used is extracted by using the MeteoSyn software which is modeled in TSOL™. Results show the high potential of GHG emission reduction due to nonconsumption of fossil fuels owing to the deployment of SWHs, and three cities Kabwe, Chipata, and Mbala had the highest GHG mitigation by 1552.97 kg/y, 1394.8 kg/y, and 1321.39 kg/y, respectively. On average, SWHs provide 62.47% of space heating and 96.05% of the sanitary hot water requirement of consumers. The findings have shown the potential for the deployment of SWHs in Zambia. The techno-enviro study in this paper can be used by the policymakers of Zambia and countries with similar climates.


Sign in / Sign up

Export Citation Format

Share Document