scholarly journals Numerical and Experimental Study on Trimaran Cross-Deck Structure’s Fatigue Characteristics Based on the Spectral Fatigue Method

2019 ◽  
Vol 7 (3) ◽  
pp. 62
Author(s):  
Chunbo Zhen ◽  
Guoqing Feng ◽  
Tianlin Wang ◽  
Pengyao Yu

Spectral fatigue analysis is performed on the trimaran cross-deck structural detail. A global finite element (FE) model with local fine meshes at hot spot locations is built for the calculation of structural response. Three-dimensional linear potential flow theory and global FE analysis are used for wave load and stress transfer function calculations. Then, the hot spots’ fatigue damage is calculated, considering various factors influencing spectral analysis, which includes cycle counting correction factors, wave scatter diagram, and the distribution coefficient of wave headings. A full-scale model fatigue test is used to investigate the fatigue behavior of the cross-deck structural detail. Using the fatigue test data, the curve characteristic of the cross-deck structural detail is produced. Finally, the trimaran cross-deck structural detail’s fatigue characteristics are summarized and the effects of the factors influencing spectral fatigue analysis are reported.

2018 ◽  
Vol 233 ◽  
pp. 00025
Author(s):  
P.V. Polydoropoulou ◽  
K.I. Tserpes ◽  
Sp.G. Pantelakis ◽  
Ch.V. Katsiropoulos

In this work a multi-scale model simulating the effect of the dispersion, the waviness as well as the agglomerations of MWCNTs on the Young’s modulus of a polymer enhanced with 0.4% MWCNTs (v/v) has been developed. Representative Unit Cells (RUCs) have been employed for the determination of the homogenized elastic properties of the MWCNT/polymer. The elastic properties computed by the RUCs were assigned to the Finite Element (FE) model of a tension specimen which was used to predict the Young’s modulus of the enhanced material. Furthermore, a comparison with experimental results obtained by tensile testing according to ASTM 638 has been made. The results show a remarkable decrease of the Young’s modulus for the polymer enhanced with aligned MWCNTs due to the increase of the CNT agglomerations. On the other hand, slight differences on the Young’s modulus have been observed for the material enhanced with randomly-oriented MWCNTs by the increase of the MWCNTs agglomerations, which might be attributed to the low concentration of the MWCNTs into the polymer. Moreover, the increase of the MWCNTs waviness led to a significant decrease of the Young’s modulus of the polymer enhanced with aligned MWCNTs. The experimental results in terms of the Young’s modulus are predicted well by assuming a random dispersion of MWCNTs into the polymer.


2021 ◽  
Author(s):  
Rakshith Naik ◽  
Yetzirah Urthaler ◽  
Scot McNeill ◽  
Rafik Boubenider

Abstract Certain subsea jumper design features coupled with operating conditions can lead to Flow Induced Vibration (FIV) of subsea jumpers. Excessive FIV can result in accumulation of allowable fatigue damage prior to the end of jumper service life. For this reason, an extensive FIV management program was instated for a large development in the Gulf of Mexico (GOM) where FIV had been observed. The program consisted of in-situ measurement, modeling and analysis. Selected well and flowline jumpers were outfitted with subsea instrumentation for dedicated vibration testing. Finite Element (FE) models were developed for each jumper and refined to match the dynamic properties extracted from the measured data. Fatigue analysis was then carried out using the refined FE model and measured response data. If warranted by the analysis results, action was taken to mitigate the deleterious effects of FIV. Details on modeling and data analysis were published in [5]. Herein, we focus on the overall findings and lessons learned over the duration of the program. The following topics from the program are discussed in detail: 1. In-situ vibration measurement 2. Overall vibration trends with flow rate and lack of correlation of FIV to flow intensity (rho-v-squared); 3. Vibration and fatigue performance of flowline jumpers vs. well jumpers 4. Fatigue analysis conservatism Reliance on screening calculations or predictive FE analysis could lead to overly conservative operational limits or a high degree of fatigue life uncertainty in conditions vulnerable to FIV. It is proposed that in-situ vibration measurements followed by analysis of the measured data in alignment with operating conditions is the best practice to obtain a realistic understanding of subsea jumper integrity to ensure safe and reliable operation of the subsea system. The findings from the FIV management program provide valuable insight for the subsea industry, particularly in the areas of integrity management of in-service subsea jumpers; in-situ instrumentation and vibration measurements and limitations associated with predictive analysis of jumper FIV. If learnings, such as those discussed here, are fed back into design, analysis and monitoring guidelines for subsea equipment, the understanding and management of FIV could be dramatically enhanced compared to the current industry practice.


2021 ◽  
Author(s):  
Tomoki Ikoma ◽  
Shota Hirai ◽  
Yasuhiro Aida ◽  
Koichi Masuda

Abstract Wave energy converters (WECs) have been extensively researched. The behaviour of the oscillating water column (OWC) in OWC WECs is extremely complex due to the interaction of waves, air, and turbines. Several problems must be overcome before such WECs can be put to practical use. One problem is that the effect of the difference in scale between a small-scale experimental model and a full-scale model is unclear. In this study, several OWC models with different scales and geometries were used in forced oscillation tests. The wave tank was 7.0 m wide, 24.0 m long, and 1.0 m deep. In the static water experiment, we measured the air pressure and water surface fluctuations in an air chamber. For the experiments, models with a box shape with an open bottom, a manifold shape with an open bottom, and a box shape with a front opening, respectively, were fabricated. Furthermore, 1/1, 1/2, and 1/4 scale models were fabricated for each shape to investigate the effects of scale and shape on the air chamber characteristics. Numerical calculations were carried out by applying linear potential theory and the results were compared with the experimental values. The results confirmed that the air chamber shape and scale affect the air pressure fluctuation and water surface fluctuation inside the OWC system.


Author(s):  
Mirela Zalar ◽  
Louis Diebold ◽  
Eric Baudin ◽  
Jacqueline Henry ◽  
Xiao-Bo Chen

Sloshing, a violent behaviour of liquid contents in tanks submitted to the forced vessels’ motion on the sea represents one of the major considerations in LNG vessels design over several past decades. State of the art of sloshing analysis relies on small-scale sloshing model tests supported by extensive developments of CFD computation techniques, commonly studying one isolated tank submitted to the forced motion without their mutual interaction. In reality, wave-induced response of the vessel carrying liquid cargo is affected by internal liquid motion, and consequently, tank liquid flow is altered by the vessel motion in return. An efficient numerical model for dynamic coupling between motions exerted by tank liquid (sloshing) and rigid body motions of the vessel (seakeeping) was developed in Bureau Veritas, formulated under the assumptions of linear potential theory in frequency domain. As already experienced with anti-rolling tanks, strong coupling effect is perceived on the first order transverse motions. However, consequences of coupled motions on sloshing loads have not been explored yet. This paper presents comparative analysis of sloshing effects induced by coupled and non-coupled vessel motion, introduced as the excitation to 6 d.o.f. small-scale model test rig. Possible risk of coupled effects is demonstrated on the example of standard size of LNG carrier operating with partly filled cargo tanks.


2021 ◽  
Author(s):  
Sacheen Bekah

This thesis presents the use of Finite Element (FE) based fatigue analysis to locate the critical point of crack initiation and predict life in a door hinge system that is subjected to both uni-axial and multi-axial loading. The results are experimentally validated. The FE model is further used to obtain an optimum design per the standard requirement in the ground vehicle industry. The accuracy of the results showed that FE based fatigue analysis can be successfully employed to reduce costly and time-consuming experiments in the preliminary design stage. Numerical analysis also provides the product design engineers with substantial savings, enabling the testing of fewer prototypes.


2021 ◽  
Author(s):  
Sacheen Bekah

This thesis presents the use of Finite Element (FE) based fatigue analysis to locate the critical point of crack initiation and predict life in a door hinge system that is subjected to both uni-axial and multi-axial loading. The results are experimentally validated. The FE model is further used to obtain an optimum design per the standard requirement in the ground vehicle industry. The accuracy of the results showed that FE based fatigue analysis can be successfully employed to reduce costly and time-consuming experiments in the preliminary design stage. Numerical analysis also provides the product design engineers with substantial savings, enabling the testing of fewer prototypes.


2019 ◽  
Vol 8 (3) ◽  
pp. 87-98
Author(s):  
Alaa Abbas ◽  
Felicite Ruddock ◽  
Rafid Alkhaddar ◽  
Glynn Rothwell ◽  
Iacopo Carnacina ◽  
...  

The use of a finite element (FE) method and selection of the appropriate model to simulate soil elastoplastic behaviour has confirmed the importance and sensitivity of the soil properties on the accuracy when compared with experimental data. The properties of the filling soil play a significant role in determining levels of deformation and displacement of both the soil and subterranean structures when using the FE model simulation. This paper investigates the impact of the traffic load on the filling soil deformation when using the traditional method, one pipe in a trench, and a new method, two pipes in a single trench one over the other, for setting up a separate sewer system. The interaction between the buried pipes and the filling soils has been simulated using an elastoplastic FE model. A modified Drucker–Prager cap constitutive model was used to simulate the stress-strain behaviours of the soil. A series of laboratory tests were conducted to identify the elastoplastic properties of the composite soil used to bury the pipes. The FE models were calibrated using a physical lab model for testing the buried pipes under applied load. This allows the FE model to be confidently upgraded to a full-scale model. The pipe-soil interactions were found to be significantly influenced by the soil properties, the method of placing the pipes in the trench and the diameters of the buried pipes. The deformation of the surface soil was decreased by approximately 10% when using the new method of setting up the separate sewer.


2020 ◽  
Vol 20 (02) ◽  
pp. 1950080
Author(s):  
BOYAN MAO ◽  
ZHOU ZHAO ◽  
BAO LI ◽  
YUE FENG ◽  
YILI FENG ◽  
...  

Background: In coronary artery bypass grafting (CABG), the patency of venous sequential graft remains controversial. Hemodynamic factors have been proved to be the important factors influencing graft patency. The objective of this study is to compare the patency of sequential grafts and normal grafts by hemodynamic environment. Methods: This study used a patient’s clinical data to construct a 0D/3D coupled multi-scale model, and used this model to calculate graft’s hemodynamics under two grafting methods. Meanwhile, CABG ideal models were constructed based on grafts’ flow data of 60 patients (63 normal grafts, 19 sequential grafts) to calculate grafts’ hemodynamics. Results: Based on the multi-scale model, it was found that the sequential graft flow and time average wall shear stress (TAWSS) were higher than normal graft, which was good for graft patency. But there were a flow separation region, some regions of high oscillatory shear index (OSI) and relative residence time (RRT) in sequential graft, which could lead to intimal hyperplasia. Based on ideal CABG models, it was known that failure rate of sequential and normal grafts were 36.8% and 36.5%, and there were significant differences between them in flow rate, TAWSS and OSI (sequential versus normal: flow rate (ml/min): [Formula: see text] versus [Formula: see text], TAWSS (Pa): [Formula: see text] versus [Formula: see text], OSI: 0.[Formula: see text] versus [Formula: see text]). Conclusion: For saphenous venous graft (SVG), although the normal graft has similar patency with the sequential graft, the hemodynamic mechanism behind it is different. In flow rate and WSS, sequential grafts have an advantage over normal grafts. But there are high OSI and RRT regions in sequential grafts.


2019 ◽  
Vol 11 (5) ◽  
pp. 710-722
Author(s):  
Jiří Běhal ◽  
Pavel Zděnek

Purpose There are structural elements on the aircraft that may be exposed to high-intensity sound levels. One of them is an air inlet duct of the jet engine. To prepare data for the air duct damage tolerance analysis, flat panels were tested under acoustic loading. The paper aims to discuss this issue. Design/methodology/approach The acoustic fatigue test equipment for grazing wave’s incidence was designed based on the FE analyses. Flat composite panels were designed and manufactured using the Hexply 8552/AGP193-PW prepreg with the simulation of production imperfections or operational damage. The dynamic behaviour of panels has been tested using three regimes of acoustic loading: white noise spectrum, engine noise spectrum and discrete harmonic frequencies. The panel deflection was monitored along its longitudinal axis, and the ultrasonic NDT instruments were used for the monitoring of relevant delamination increments. The FE model of the panel was created in Abaqus to study panel dynamic characteristics. Findings No delamination progress was observed by NDT testing even if dynamic characteristics, especially modal frequency, of the panel changed during the fatigue test. Rayleigh damping coefficients were evaluated for their use in FE models. Significant differences were found between the measured and computed panel deflection curves near the edge of the panel. Originality/value The research results underscored the signification of the FE model boundary conditions and the element type selections when the panel works like a membrane rather than a plate because of their low bending stiffness.


Author(s):  
Brian E. Healy

A spectral fatigue analysis using both the surface extrapolation and Battelle structural stress methodologies has been performed on a side shell connection detail typical of a representative FPSO or tanker vessel. This marks the first time the Battelle method has been adapted to spectral fatigue and details of the implementation are presented for narrow banded applications. Fatigue damage at the toe along a number of weld lines is computed for a variety of surface extrapolation strategies and Battelle method options. Results are reported and compared. Recommendations regarding the application of the Battelle method to spectral fatigue are made.


Sign in / Sign up

Export Citation Format

Share Document