scholarly journals Aspergillus fumigatus Fumagillin Contributes to Host Cell Damage

2021 ◽  
Vol 7 (11) ◽  
pp. 936
Author(s):  
Xabier Guruceaga ◽  
Uxue Perez-Cuesta ◽  
Aize Pellon ◽  
Saioa Cendon-Sanchez ◽  
Eduardo Pelegri-Martinez ◽  
...  

The activity of fumagillin, a mycotoxin produced by Aspergillus fumigatus, has not been studied in depth. In this study, we used a commercial fumagillin on cultures of two cell types (A549 pneumocytes and RAW 264.7 macrophages). This toxin joins its target, MetAP2 protein, inside cells and, as a result, significantly reduces the electron chain activity, the migration, and the proliferation ability on the A549 cells, or affects the viability and proliferation ability of the RAW 264.7 macrophages. However, the toxin stimulates the germination and double branch hypha production of fungal cultures, pointing out an intrinsic resistant mechanism to fumagillin of fungal strains. In this study, we also used a fumagillin non-producer A. fumigatus strain (∆fmaA) as well as its complemented strain (∆fmaA::fmaA) and we tested the fumagillin secretion of the fungal strains using an Ultra High-Performance Liquid Chromatography (UHPLC) method. Furthermore, fumagillin seems to protect the fungus against phagocytosis in vitro, and during in vivo studies using infection of immunosuppressed mice, a lower fungal burden in the lungs of mice infected with the ∆fmaA mutant was demonstrated.

2019 ◽  
Vol 17 (4) ◽  
pp. 348-358
Author(s):  
Thanwa WONGSUK ◽  
Passanesh SUKPHOPETCH

Aspergillus fumigatus is an opportunistic fungal pathogen to which immunocompromised patients are especially susceptible. A. fumigatus can form biofilms both in vitro and in vivo. Quorum sensing molecules (QSMs) have activity against some fungi. This study aimed to determine the activity of the QSMs farnesol, tyrosol, phenylethanol and tryptophol against the growth A. fumigatus on solid media, and against its ability to form biofilms. The activity of each QSM against planktonic A. fumigatus growth was assessed using the CLSI M38-A2 broth microdilution assay, while QSM inhibition of A. fumigatus’s biofilm formation was measured in crystal violet, and 2, 3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-caboxanilide (XTT) assays. The QSMs reduced the colony diameter of the studied strains in a QSM-dependent pattern. Tryptophol showed the best effect and tyrosol showed the poorest effect. The minimum inhibitory concentrations (MICs) for farnesol, tyrosol, phenylethanol and tryptophol tested against A. fumigatus were > 32, > 32, 16 and 8 mM, respectively. The effective concentration each QSM required to inhibit A. fumigatus biofilm formation were higher than the planktonic MICs. In this study, the performance of QSMs against A. fumigatus ranked from best to worst as follows: tryptophol, phenylethanol, farnesol and tyrosol. Because of phenylethanol and tryptophol showed the strongest effect to the growth and biofilm formation of A. fumigatus. Therefore, the cytotoxic activities of phenylethanol and tryptophol in A549 cells (lung alveolar epithelial cells) were determined. However, phenylethanol and tryptophol induced A549 cell damage (at MIC level), as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) and lactate dehydrogenase (LDH) assays.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 277
Author(s):  
Lei Wang ◽  
Hye-Won Yang ◽  
Ginnae Ahn ◽  
Xiaoting Fu ◽  
Jiachao Xu ◽  
...  

In the present study, the in vitro and in vivo anti-inflammatory effects of the sulfated polysaccharides isolated from Sargassum fulvellum (SFPS) were evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and zebrafish. The results indicated that SFPS improved the viability of LPS-stimulated RAW 264.7 macrophages from 80.02 to 86.80, 90.09, and 94.62% at the concentration of 25, 50, and 100 µg/mL, respectively. Also, SFPS remarkably and concentration-dependently decreased the production levels of inflammatory molecules including nitric oxide (NO), tumor necrosis factor-alpha, prostaglandin E2, interleukin-1 beta, and interleukin-6 in LPS-treated RAW 264.7 macrophages. In addition, SFPS significantly inhibited the expression levels of cyclooxygenase-2 and inducible nitric oxide synthase in LPS-treated RAW 264.7 macrophages. Furthermore, the in vivo test results indicated that SFPS improved the survival rate of LPS-treated zebrafish from 53.33 to 56.67, 60.00, and 70.00% at the concentration of 25, 50, and 100 µg/mL, respectively. In addition, SFPS effectively reduced cell death, reactive oxygen species, and NO levels in LPS-stimulated zebrafish. Taken together, these results suggested that SFPS possesses strong in vitro and in vivo anti-inflammatory activities, and could be used as an ingredient to develop anti-inflammatory agents in the functional food and pharmaceutical industries.


2018 ◽  
Vol 137 ◽  
pp. 179-192 ◽  
Author(s):  
Sihle E. Mabhida ◽  
Phiwayinkosi V. Dludla ◽  
Rabia Johnson ◽  
Musawenkosi Ndlovu ◽  
Johan Louw ◽  
...  

2012 ◽  
Vol 108 (9) ◽  
pp. 1562-1573 ◽  
Author(s):  
Victor Pallarès ◽  
Damien Calay ◽  
Lídia Cedó ◽  
Anna Castell-Auví ◽  
Martine Raes ◽  
...  

Macrophages play an important role in immunogenic challenges by producing reactive oxygen species, NO and proinflammatory cytokines that can aggravate and propagate local inflammation. Multiple mechanisms regulate these inflammatory processes. NF-κB and activator protein 1 pathways are crucial in the expression of proinflammatory genes, such as TNF-α, IL-1 (α or β) and -6. Some polyphenols, which are present in beverages, vegetables and fruits, and PUFA, which are present in marine oils and fish food, possess anti-inflammatory effects in vivo and in vitro. Our aim in the present study was to assess whether polyphenols and PUFA have synergistic anti-inflammatory effects in murine macrophages in vitro. Inflammation in RAW 264.7 macrophages was induced by lipopolysaccharide at 100 ng/ml. The treatments with molecules were performed by co-incubation for 19 h. A NO production assay by Griess reaction, a phosphoprotein assay by Pathscan ELISA kit and gene expression analysis using the TaqMan® Low-density Array for ninety-one genes related to inflammation, oxidative stress and metabolism were performed to assess the synergistic anti-inflammatory effects of polyphenols, epigallocatechin gallate and resveratrol (Res; 2·5 μg/ml), and the PUFA, DHA and EPA (30 μm). Adding Res+EPA had an enhanced anti-inflammatory effect, in comparison with EPA and Res alone, leading to decreased NO levels; modulating the phospho-stress activated protein kinase/Jun N-terminal kinase (P-SAPK/JNK) level; down-regulating proinflammatory genes, such as IL, chemokines, transcription factors; and up-regulating several antioxidant genes. Therefore, this combination has a stronger anti-inflammatory effect than either of these molecules separately in RAW macrophages.


Marine Drugs ◽  
2018 ◽  
Vol 16 (12) ◽  
pp. 512 ◽  
Author(s):  
Cristina Martínez-Villaluenga ◽  
Elena Peñas ◽  
Daniel Rico ◽  
Ana Martin-Diana ◽  
Maria Portillo ◽  
...  

Metabolic syndrome (MetS) greatly increases the risk of cardiovascular diseases and type 2 diabetes mellitus. The aim of this study was to evaluate the efficacy of functional snacks containing a combination of wakame (W) and carob pod (CP) flours in reducing markers associated with MetS. The mechanisms of action underlying these effects were also evaluated. In vitro approaches were carried out in mature 3T3-L1 adipocytes and RAW 264.7 macrophages treated with different doses of extracts from W, CP, or a combination of both. Furthermore, an in vivo experiment was conducted in rats with MetS treated with normal-caloric diets containing different snack formulations with combinations of 1/50 (snack A) or 1/5 of wakame/carob (snack B). In vitro experiments results indicated that both W and CP had delipidating effects, but only the latter induced anti-inflammatory and anti-hypertensive effects. As far as the in vivo study is concerned, snack B was ineffective and snack A showed an anti-hypertensive effect in rats with MetS. The present study shows for the first time the in vitro efficacy of a W and CP combination as an anti-inflammatory, delipidating, and anti-hypertensive tool, and its potential usefulness in treating MetS.


2012 ◽  
Vol 54 (2) ◽  
pp. 230-234 ◽  
Author(s):  
L. Jiang ◽  
X.-P. Xiong ◽  
C.-S. Hu ◽  
Z.-L. Ou ◽  
G.-P. Zhu ◽  
...  

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 997-997
Author(s):  
Kandace Gollomp ◽  
Ian Johnston ◽  
Minna Kim ◽  
Li Zhai ◽  
Guohua Zhao ◽  
...  

Abstract When stimulated by infection or inflammation, neutrophils expel NETs, decondensed chromatin coated with histones and antimicrobial proteins that ensnares pathogens but also damages host tissue. Platelet factor 4 (PF4, CXCL4) is a CXC chemokine stored in platelet alpha-granules and released in high concentrations during platelet activation. Tetrameric PF4 has a very high affinity for polyanionic molecules, including DNA, and we have found that PF4 binds and physically compacts NETs, causing them to have increased resistance to endonuclease digestion. Our group has also observed that PF4 expression leads to enhanced survival in a murine model of sepsis. Based on these findings, we chose to investigate whether PF4-mediated NET compaction is protective in endotoxemia. To study PF4-NET interactions, we developed a microfluidic assay in which neutrophils were adhered to fibronectin-coated channels and then stimulated to release NETs with phorbol myristate acetate(PMA). NETs were visualized by staining with the fluorescent nucleic acid stain SYTOX. Changes in NET morphology and fluorescence were quantified in the presence of varying PF4 concentrations. DNase I was then infused through these channels and the extent of digestion was measured. These experiments showed that the presence of PF4 led to NET compaction and decreased NET degradation following DNase infusion. We then performed in vitro studies examining NET-endothelial interactions in which isolated neutrophils were stimulated to release NETs, incubated with buffer alone or buffer containing PF4, and flowed through human endothelial umbilical vein cell (HUVEC) lined microfluidic channels that had been stimulated with tumor necrosis factor (TNF) α. EC viability was assessed 24-hours post NET exposure and revealed that the presence of PF4 protected HUVECs from NET-induced damage. To further investigate PF4-NET interactions in endotoxemia, we conducted in vivo studies using PF4-deficient mice (mPF4-/-) and wildtype (WT) controls injected with lipopolysaccharide (LPS). Plasma NET markers [cell free DNA (cfDNA), citrullinated histones (cit-His), and myeloperoxidase (MPO)] were quantified via ELISA and Western blot at various time points following LPS injection. mPF4-/- mice were also implanted with PF4-containing osmotic pumps and the NET markers were also assessed following LPS exposure. These experiments revealed that compared to WT mice, LPS injected mPF4-/- mice had significantly higher plasma levels of NET components, including cfDNA, cit-His and MPO. When mPF4-/- mice were implanted with PF4-releasing osmotic pumps prior to LPS injection, they had plasma NET component levels comparable to those observed in WT mice. Based on the results of our in vitro and in vivo studies, we propose that PF4 infusion compacts NETs, decreasing their susceptibility to DNAse lysis, and preventing the release of toxic NET degradation products (NDPs) such as cfDNA and cit-His. We posit that PF4-mediated sequestration of NDPs prevents endothelial cell damage in the HUVEC-lined microfluidic model. We believe that the results of our studies in mPF4-/- mice demonstrate that PF4 has a similarly protective effect in vivo, decreasing NET lysis and reducing NDP generation. These findings suggest that in sepsis, the stabilization rather than the lysis of NETs may be therapeutic. Further investigation should be performed to determine if treatment with PF4 or other small positively-charged proteins such as protamine sulfate that can sequester NDPs, may be beneficial the treatment of sepsis. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Peng Sun ◽  
Shun-Zong Song ◽  
Shuang Jiang ◽  
Xia Li ◽  
You-Li Yao ◽  
...  

The current study was designed to investigate the anti-inflammatory effect of salidroside (SDS) and the underlying mechanism by using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro and a mouse model of binge drinking induced liver injury in vivo. SDS downregulated protein expression of toll-like receptor 4 (TLR4) and CD14. SDS inhibited LPS-triggered phosphorylation of LPS-activated kinase 1 (TAK1), p38, c-Jun terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Degradation of IκB-α and nuclear translocation of nuclear factor (NF)-κB were effectively blocked by SDS. SDS concentration-dependently suppressed LPS mediated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels, as well as their downstream products, NO. SDS significantly inhibited protein secretion of interleukin (IL)-1β. Additionally C57BL/6 mice were orally administrated SDS for continuous 5 days, followed by three gavages of ethanol every 30 min. Alcohol binge drinking caused the increasing of hepatic lipid accumulation and serum transaminases levels. SDS pretreatment significantly alleviated liver inflammatory changes and serum transaminases levels. Further investigation indicated that SDS markedly decreased protein level of IL-1β in serum. Taken together, these data implied that SDS inhibits liver inflammation both in vitro and in vivo, and may be a promising candidate for the treatment of inflammatory liver injury.


2021 ◽  
Vol 8 (03) ◽  
pp. e143-e152
Author(s):  
Antonia Carolina Melo Monteiro ◽  
Aminata Doucoure Drame ◽  
Francisca Melo Nascimento ◽  
Ana Luisa Miranda-Vilela ◽  
Alexandre Vasconcelos Lima ◽  
...  

Abstract Aspergillus fumigatus is the main etiological agent of aspergillosis. Considering azole antifungal drug resistance in A. fumigatus, which compromises treatment, new alternatives are needed. Among them, essential oils (EOs) can be an alternative treatment, having shown positive results in inhibiting phytopathogenic fungi in vitro. We aimed to determine the in vitro antifungal activity of Origanum vulgare L. subsp. hirtum (Link) (oregano) and Rosmarinus officinalis L. (rosemary) EOs alone and in association (O. vulgare+R. officinalis) against A. fumigatus. EOs were analyzed by gas chromatography (GC-FID and GC/MS systems), and analyses showed that the major components of O. vulgare EO were carvacrol (67.8%), p-cymene (14.8%), and thymol (3.9%); for R. officinalis, they were the monoterpenes 1,8-cineole (49.1%), camphor (18.1%) and α-pinene (8.1). For biological assays, five EO concentrations, 0.2; 0.4; 0.6; 0.8 and 1.0%, were used in disk diffusion and agar dilution tests for 21 days. In disk diffusion, O. vulgare EO alone and in association (O. vulgare+R. officinalis) showed fungicidal activity at all concentrations. In agar dilution, inhibitory action was demonstrated from 0.6% for O. vulgare EO and in association (O. vulgare+R. officinalis). R. officinalis EO at 1.0% showed no fungal growth, determining the minimum inhibitory concentration (MIC). The present study demonstrated inhibitory actions of O. vulgare and R. officinalis EOs in A. fumigatus. GC analyses corroborated the literature regarding their antibacterial and antifungal effects. However, further in vitro and in vivo studies are needed to evaluate EOs as alternative antifungals for treating aspergillosis.


2006 ◽  
Vol 72 (3) ◽  
pp. 308-319 ◽  
Author(s):  
Yi-Lin Chen ◽  
Shinn-Zong Lin ◽  
Jang-Yang Chang ◽  
Yeung-Leung Cheng ◽  
Nu-Man Tsai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document