scholarly journals Biochemical Profile by GC–MS of Fungal Biomass Produced from the Ascospores of Tirmania nivea as a Natural Renewable Resource

2021 ◽  
Vol 7 (12) ◽  
pp. 1083
Author(s):  
Jamal M. Khaled ◽  
Naiyf S. Alharbi ◽  
Ramzi A. Mothana ◽  
Shine Kadaikunnan ◽  
Ahmed S. Alobaidi

The edible fruiting bodies of desert truffles are seasonally collected and consumed in many regions of the world. Although they are very expensive, they are bought and sold as a result of considerable scientific reports confirming their health and nutritional benefits. This study aimed to conduct laboratory production of the fungal biomass of Tirmania nivea as a natural renewable resource of many active biological compounds using an artificial growth medium. The T. nivea collected from Hafar Al-Batin, which is north of Saudi Arabia, and their ascospores were harvested and used to produce fungal biomass in potato dextrose broth. The cultivation was conducted using a shaking incubator at 25 °C for two weeks at 200 rpm. The crud extracts of the fungal biomass and mycelium-free broth were prepared using ethyl acetate, methanol and hexane. Preliminary gas chromatography–mass spectrometry (GC–MS) analysis and their biological activity as antimicrobial agents were investigated. The results showed that the crude extracts have biological activity against mold, yeast and bacteria. The preliminary GC–MS analysis reported that the fungal biomass and extracellular metabolites in the growth medium are industrial renewable resources of several biological compounds that could be used as antifungal, antibacterial, antiviral, anticancer, antioxidant, anti-trypanosomal and anti-inflammatory agents.

2019 ◽  
Vol 19 (2) ◽  
pp. 114-118
Author(s):  
Gian Luigi Mariottini ◽  
Irwin Darren Grice

Natural compounds extracted from organisms and microorganisms are an important resource for the development of drugs and bioactive molecules. Many such compounds have made valuable contributions in diverse fields such as human health, pharmaceutics and industrial applications. Presently, however, research on investigating natural compounds from marine organisms is scarce. This is somewhat surprising considering that the marine environment makes a major contribution to Earth's ecosystems and consequently possesses a vast storehouse of diverse marine species. Interestingly, of the marine bioactive natural compounds identified to date, many are venoms, coming from Cnidarians (jellyfish, sea anemones, corals). Cnidarians are therefore particularly interesting marine species, producing important biological compounds that warrant further investigation for their development as possible therapeutic agents. From an experimental aspect, this review aims to emphasize and update the current scientific knowledge reported on selected biological activity (antiinflammatory, antimicrobial, antitumoral, anticoagulant, along with several less studied effects) of Cnidarian venoms/extracts, highlighting potential aspects for ongoing research towards their utilization in human therapeutic approaches.


2020 ◽  
Vol 10 (3) ◽  
pp. 312-321
Author(s):  
Idin Sahidin ◽  
Carla W. Sabandar ◽  
Wahyuni ◽  
Rini Hamsidi ◽  
Sandra Aulia Mardikasari ◽  
...  

Background: Marine sponges provided a great source of natural products with promising biological activity. This study was aimed to investigate the chemical constituents of methanol extracts of selected Indonesian marine sponges (Callyspongia sp., Clathria sp., Melophlus sarasinorum, and Xestospongia sp.), collected from the Saponda Islands, Southeast Sulawesi, Indonesia as well as to evaluate their antimicrobial and antioxidant activities. Methods: LCMS/MS analysis used to identify the compounds. Agar well diffusion and DPPH assays were used to evaluate the antimicrobial and antioxidant activities. Results: Chemical screening reported alkaloids, terpenoids, steroids, and saponins from all investigated sponges. The LC-MS/MS analysis identified various compounds which mainly contained steroids. Antimicrobial activity (against Bacillus subtilis, Escherichia coli, Salmonella enterica, and Candida albicans) was only shown by the Xestospongia sp. extract. Meanwhile, extracts of M. sarasinorum, Xestospongia sp., and Callyspongia sp. exhibited potent radical scavenging activity. Conclusion: The study concluded that the selected sponges could provide various groups of compounds. Methanol extracts of these sponges could be used as sources of antimicrobial and antioxidant agents.


Proceedings ◽  
2021 ◽  
Vol 57 (1) ◽  
pp. 101
Author(s):  
Virgil Badescu ◽  
Raluca Senin

The aim of this article was the gas chromatography–mass spectrometry (GC-MS) analysis oforganic matter from a residual liquor sample (S.C. Alum S.A., Tulcea), extracted by the solid-phasemicroextraction method (SPMA) and derivatized with N-(tert-butyldimethylsilyl)-Nmethyltrifluoroacetamide(MTBSTFA) as the silylating agent. [...]


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Priyanka Verma ◽  
Atul Bajaj ◽  
R. M. Tripathi ◽  
Sudhir K. Shukla ◽  
Suman Nagpal

Abstract Background Recent advances in the diversified anti-diabetic drugs have appeared in the startling increase in the count of poisoning cases. The epidemics of diabetes mellitus are increasing; hence, the no. of anti-diabetic drug users raised by 42.9%. The use of glimepiride raised to 24%. As the toxicity and drug cases are also escalating with increasing epidemics of diabetes mellitus, a novel gas chromatography-mass spectrometry (GC-MS) method for detecting glimepiride in biological matrices is developed. Results Liquid-liquid extraction method was employed by using 1-butanol: hexane (50:50, v/v) under an alkaline medium, and then back extraction was done via acetic acid. Distinct derivatization techniques were employed for the sample preparation for GC-MS analysis, i.e., silylation and acylation. Derivatization approaches were optimized under different parameters, i.e., reaction temperature and reaction time. N-Methyl-N-(trimethylsilyl) trifluoroacetamide [MSTFA] was found to be the best sound derivatization reagent for the GC-MS analysis of glimepiride. Total ion current (TIC) mode was selected for the monitoring of ions of trimethylsilyl (TMS) derivative of glimepiride with an m/z ratio of 256. Distinct parameters like specificity, carryover, stability, precision, and accuracy were evaluated for validating the identification method. The GC-MS method is found to be linear and illustrated within the range 500 to 2500 ng/ml with the value of R2 (coefficient of determination) at 0.9924. The stability of the extracted and derivatized glimepiride was accessed with regard to processed/extracted sample conditions and autosampler conditions, respectively. Accuracy at each concentration level was within the + 15% of the nominal concentration. Precision (%) for the interday and intraday analysis was found to be in the respectable spectrum. Conclusion Henceforth, the proposed GC-MS method can be employed for the determination of glimepiride in biological matrices.


1981 ◽  
Vol 15 (10) ◽  
pp. 738-750 ◽  
Author(s):  
Neil Massoud

The treatment of urinary tract infections (UTIs) has become a complex problem for the clinical practitioner. An understanding of the pharmacology, pharmacokinetics, and in vivo biological activity of antimicrobial agents is needed, as is an understanding of the variables that may influence patient compliance with medication regimens. Although UTIs are usually treated for 10 to 14 days, shorter treatment schedules of seven to ten days or even single-dose regimens are possible. Guidelines for the treatment of UTIs are presented along with suggestions for increased patient compliance.


Author(s):  
Yogeshwari C ◽  
Kumudha P

 Objective:The objective of this study is to characterize the phytoconstituents of Tiliacora racemosa Colebr. using gas chromatography mass spectrometry (GC-MS).Methods: Preliminary phytochemical and physicochemical analysis was carried out using standard procedures. GC-MS analysis of methanolic extract was carried out using Thermo GC-Trace Ultra version: 5.0, Thermo MS DSQ with a DB 35MS capillary standard non-polar column and gas chromatograph interfaced to a mass selective detector (MS DSQ II) with Xcalibur software.Results: Preliminary phytochemical screening revealed the presence of alkaloids, flavonoids, phenols, tannins, triterpenoids, steroids, proteins and amino acids, carbohydrates, saponins and coumarin. Quinones, anthraquinones, glycosides and fixed oil were absent. GC-MS analysis revealed the presence of 28 compounds of which quinic acid (retention times [RT]: 15.65) and inositol, 1-deoxy-(CAS) (RT: 19.24) was observed as abundant compounds.Conclusion: The presence of various bioactive compounds confirms the medicinal importance and it’s application for curing various diseases by traditional practitioners. However, isolation and characterization of potential bioactive compounds would lead to drug formulation.


Author(s):  
Lokesh Ravi ◽  
Manasvi V ◽  
Praveena Lakshmi B

ABSTRACTObjective: Aim of this study is to analyze the antibacterial and antioxidant potential of crude saponin extract (CSE) from Abutilon indicum leaves.Methods: CSE was subjected for gas chromatography-mass spectrometry (GC-MS) analysis to identify its components. Antibacterial potentialwas analyzed using agar well diffusion method and minimum inhibitory concentration (MIC) was detected using 96-well plate method, againstStaphylococcus aureus (MTCC: 3160) and Escherichia coli (MTCC: 443). DNA damage study was performed using comet assay. Antioxidant capabilitywas studied using 2,2-diphenyl-1-picrylhydrazyl scavenging assay.Results: GC-MS analysis suggested a library match to benzene-1-4-bis(phenylmethyl), with a molecular weight of 258 g/mol to be the majorcomponent in the CSE at 21.25 RT. CSE demonstrated 96.16% free radical scavenging activity at 2.5 mg/ml concentration. CSE demonstrateda significant antibacterial activity in the well diffusion assay, S. aureus 17 mm and E. coli 15 mm, with a MIC value of 1.11 mg/ml. Comet assaydemonstrated no DNA damage.Conclusion: These results conclude that CSE of A. indicum leaves possesses promising antibacterial and antioxidant potential.Keywords: Abutilon indicum, Saponin, Escherichia coli, Staphylococcus aureus, 2,2-diphenyl-1-picrylhydrazyl, Antibacterial assay.


2017 ◽  
Vol 35 (0) ◽  
Author(s):  
A. ALI ◽  
A. JAVAID ◽  
A. SHOAIB

ABSTRACT Sclerotium rolfsii is a soil-borne fungal plant pathogen that causes diseases in more than 500 plant species. Chemical fungicides used to control this disease cause environmental pollution, therefore, plant derived compounds can be used as alternative to synthetic fungicides to reduce environmental pollution. Chenopodium album is a weed of family Chenopodiaceae that is used as food and also has medicinal importance. In the present study, antifungal activity of methanolic root extract of C. album was evaluated against S. rolfsii using six concentrations viz. 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 g 100 mL-1 amended in malt extract as growth medium. All the root extract concentrations significantly reduced fungal biomass by 15-58% over control. Gas chromatography-mass spectrometry (GC-MS) analysis of the methanolic root extract of C. album was performed. Six compounds were identified in methanolic root extract through GC-MS analysis. The most abundant compound was 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester (58.56%) followed by 9-octadecenoic acid (Z)-, methyl ester (12.75%) and 9-octadecenoic acid (Z)-, methyl ester (10.27%), which might be responsible for antifungal activity of methanolic root extract of C. album.


Sign in / Sign up

Export Citation Format

Share Document