scholarly journals Antibacterial Activity of Rosmarinus officinalis against Multidrug-Resistant Clinical Isolates and Meat-Borne Pathogens

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Aseer Manilal ◽  
Kuzhunellil Raghavanpillai Sabu ◽  
Melat Woldemariam ◽  
Addis Aklilu ◽  
Gelila Biresaw ◽  
...  

Background. In developing countries, the prevalence of bacterial infections is quite rampant due to several factors such as the HIV/AIDS pandemic, lack of hygiene, overcrowding, and resistance to conventional antimicrobials. Hence the use of plant-based antimicrobial agents could provide a low-cost alternative therapy. Rosmarinus officinalis is reputed as a medicinal plant in Ethiopia; however, its antibacterial activity against many of the clinical isolates remains overlooked. Methods. Tender foliage of R. officinalis was collected and extracted in ethanol (EtOH) and evaluated for their antimicrobial activity against ten multidrug-resistant (MDR) clinical isolates, human type culture pathogens, and meat-borne bacterial isolates by employing agar well diffusion assay. Results. EtOH extract of R. officinalis efficiently subdued the growth of all tested MDR clinical isolates in varying degrees. Salmonella sp. and Staphylococcus aureus were found to be the most sensitive clinical isolates. Likewise, it efficiently repressed the growth of meat-borne pathogens, particularly, S. aureus and Salmonella sp. showing its potentiality to be used as a natural antibacterial agent in the meat processing industry. The mechanism of antibiosis of plant extract against meat-borne pathogens is inferred to be bactericidal. Chemical constituents of the crude plant extract were analysed by Gas Chromatography-Mass Spectroscopy (GC-MS), Fourier Transform Infrared (FT-IR), and UV-visible spectroscopy showing genkwanin (26%), camphor (13%), endo-borneol (13%), alpha-terpineol (12%), and hydroxyhydrocaffeic acid (13%) as the major compounds. Conclusion. Overall results of the present study conclude that R. officinalis could be an excellent source of antimicrobial agents for the management of drug-resistant bacteria as well as meat-borne pathogens.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Olufunmiso Olusola Olajuyigbe ◽  
Otunola Adedayo ◽  
Roger Murugas Coopoosamy

The antibacterial activity of the extracts of Aframomum melegueta including n-hexane extract (NHE), nondefatted methanol extract (NDME), and defatted methanol extract (DME) was investigated in this study. The NHE exhibited no antibacterial activity. The DME showed higher antibacterial activity than the NDME against the different isolates. At the highest concentration of 10 mg/mL in agar diffusion, NDME produced inhibition zones ranging from 11 to 29 mm against the microorganisms while DME produced inhibition zones ranging from 20 to 40 mm with the concentration of 10 mg/mL against the microorganisms. 0.1 mg/mL of the DME produced inhibition zones ranging between 12 and 14 mm in Aeromonas hydrophila ATCC 35654 and Pseudomonas aeruginosa ATCC 15442, respectively, while none of the isolates were inhibited by the NDME at a concentration of 1 mg/mL or less. In the agar dilution assay, the MICs of the NDME and DME ranged between 0.31 and 10 mg/mL, but more isolates were inhibited at 0.31 mg/mL of DME than those in NDME. In macrobroth assay, the MICs of the NDME ranged between 0.15 and 5.0 mg/mL and the MBCs ranged between 0.63 and 5.0 mg/mL, and the MICs of the DME ranged between 0.08 and 5.0 mg/mL and the MBCs were between 0.31 and 5.0 mg/mL. This study indicated that DME was more active with higher antibacterial activity than the NDME of this plant, and extracting the fatty portion of plant materials prior susceptibility testing would allow plant extracts to be more effective as well as justifying the use of Aframomum melegueta in traditional medicine for the treatment of bacterial infections.


2021 ◽  
Vol 5 (1) ◽  
pp. 020-028
Author(s):  
Fernandes Laura Silva ◽  
da Costa Ygor Ferreira Garcia ◽  
de Bessa Martha Eunice ◽  
Ferreira Adriana Lucia Pires ◽  
do Amaral Corrêa José Otávio ◽  
...  

Morbidity and mortality of the infected patients by multidrug-resistant bacteria have increased, emphasizing the urgency of fight for the discovery of new innovative antibiotics. In this sense, natural products emerge as valuable sources of bioactive compounds. Among the biodiversity, Eryngium pristis Cham. & Schltdl. (Apiaceae Lindl.) is traditionally used to treat thrush and ulcers of throat and mouth, as diuretic and emmenagogue, but scarcely known as an antimicrobial agent. With this context in mind, the goals of this study were to investigate the metabolic profile and the antibacterial activity of ethanolic extract (EE-Ep) and hexane (HF-Ep), dichloromethane (DF-Ep), ethyl acetate (EAF-Ep) and butanol (BF-Ep) fractions from E. pristis leaves. Gas Chromatography-Mass Spectrometry (GC-MS) was performed to stablish the metabolic profile and revealed the presence of 12 and 14 compounds in EAF-Ep and HF-Ep, respectively. β-selinene, spathulenol, globulol, 2-methoxy-4-vinylphenol, α-amyrin, β-amyrin, and lupeol derivative were some of phytochemicals identified. The antibacterial activity was determined by Minimal Inhibitory Concentration (MIC) using the broth micro-dilution against eight ATCC® and five methicillin-resistant Staphylococcus aureus (MRSA) clinical strains. HF-Ep was the most effective (MIC ≤ 5,000 µg/µL), being active against the largest part of tested Gram-positive and Gram-negative bacterial strains, including MRSA, with exception of Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 9027) and (ATCC 27853). These results suggest that E. pristis is a natural source of bioactive compounds for the search of new antibiotics which can be an interesting therapeutic approach to recover patients mainly infected by MRSA strains.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1587
Author(s):  
Feng Wang ◽  
Xiaohang Liu ◽  
Zhengyu Deng ◽  
Yao Zhang ◽  
Xinyu Ji ◽  
...  

With the increasing spread of multidrug-resistant bacterial pathogens, it is of great importance to develop alternatives to conventional antibiotics. Here, we report the generation of a chimeric phage lysin, MLTphg, which was assembled by joining the lysins derived from Meiothermus bacteriophage MMP7 and Thermus bacteriophage TSP4 with a flexible linker via chimeolysin engineering. As a potential antimicrobial agent, MLTphg can be obtained by overproduction in Escherichia coli BL21(DE3) cells and the following Ni-affinity chromatography. Finally, we recovered about 40 ± 1.9 mg of MLTphg from 1 L of the host E. coli BL21(DE3) culture. The purified MLTphg showed peak activity against Staphylococcus aureus ATCC6538 between 35 and 40 °C, and maintained approximately 44.5 ± 2.1% activity at room temperature (25 °C). Moreover, as a produced chimera, it exhibited considerably improved bactericidal activity against Staphylococcus aureus (2.9 ± 0.1 log10 reduction was observed upon 40 nM MLTphg treatment at 37 °C for 30 min) and also a group of antibiotic-resistant bacteria compared to its parental lysins, TSPphg and MMPphg. In the current age of growing antibiotic resistance, our results provide an engineering basis for developing phage lysins as novel antimicrobial agents and shed light on bacteriophage-based strategies to tackle bacterial infections.


2020 ◽  
Vol 8 (5) ◽  
pp. 639 ◽  
Author(s):  
Alexis Simons ◽  
Kamel Alhanout ◽  
Raphaël E. Duval

Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 151
Author(s):  
Tatjana Kirtikliene ◽  
Aistė Mierauskaitė ◽  
Ilona Razmienė ◽  
Nomeda Kuisiene

Bacterial resistance to antimicrobial agents plays an important role in the treatment of bacterial infections in healthcare institutions. The spread of multidrug-resistant bacteria can occur during inter- and intra-hospital transmissions among patients and hospital personnel. For this reason, more studies must be conducted to understand how resistance occurs in bacteria and how it moves between hospitals by comparing data from different years and looking out for any patterns that might emerge. Multidrug-resistant (MDR) Acinetobacter spp. was studied at 14 healthcare institutions in Lithuania during 2014, 2016, and 2018 using samples from human bloodstream infections. In total, 194 isolates were collected and identified using MALDI-TOF and VITEK2 analyzers as Acinetobacter baumannii group bacteria. After that, the isolates were analyzed for the presence of different resistance genes (20 genes were analyzed) and characterized by using the Rep-PCR and MLVA (multiple-locus variable-number tandem repeat analysis) genotyping methods. The results of the study showed the relatedness of the different Acinetobacter spp. isolates and a possible circulation of resistance genes or profiles during the different years of the study. This study provides essential information, such as variability and diversity of resistance genes, genetic profiling, and clustering of isolates, to better understand the antimicrobial resistance patterns of Acinetobacter spp. These results can be used to strengthen the control of multidrug-resistant infections in healthcare institutions and to prevent potential outbreaks of this pathogen in the future.


2019 ◽  
Vol 6 ◽  
pp. 10-16 ◽  
Author(s):  
Tetiana Krupodorova ◽  
Victor Barshteyn ◽  
Elena Pokas

The antibacterial activity of Fomitopsis betulina cultural liquid (native, native concentrated, lyophilized, dried) against standard bacteria (Escherichia coli АТСС 25922, Pseudomonas aeruginosa АТСС 27853, Staphylococcus aureus АТСС 25923), and clinical isolates (Acinetobacter baumannii 50/1496 MBL, A. baumannii 88/2995 MBL, E. coli 116/3196 KPC, Klebsiella pneumoniae 6/509 ESBL, AmpC, KPC, P. aeruginosa 99/3066 MBL, P. aeruginosa 125/3343 MBL, S. haemoliticus 22/824 MRSA, S. aureus 134/3569 MRCNS) has been evaluated by the serial dilutions method. The antibacterial activity of F. betulina against S. haemoliticus and A. baumannii has been found for the first time. All samples of F. betulina cultural liquid demonstrated the inhibitory effect against standard bacterial strains at the minimum bactericidal concentration (MBC) ranging from >2.0 up to 18.75 mg/ml, and against multidrug-resistant clinical isolates with MBC from 7.8 up to 48.42 mg/ml. The dried F. betulina cultural liquid showed the highest antimicrobial activity against standard bacteria and clinical isolates, except A. baumannii 50/1496 MBL, while native concentrated cultural liquid was the most effective against this pathogen. The study showed that the antibacterial activity of the cultural liquid of F. betulina was improved by concentration and drying. The results obtained indicate that F. betulina cultural liquid contains alternative antimicrobial agents, useful for the treatment of bacterial diseases and might be a perspective substance for the pharmaceutical industries


2018 ◽  
Vol 90 (2) ◽  
pp. 1665-1670 ◽  
Author(s):  
FELIPE V. DE ASSIS ◽  
FLÁVIA L. SIQUEIRA ◽  
ISABELA E. GONÇALVES ◽  
RAFAEL P. LACERDA ◽  
RAFAELA A. NASCIMENTO ◽  
...  

2018 ◽  
Author(s):  
Yongji Wu ◽  
Beibei Chai ◽  
Lizhen Wang ◽  
Weijia Jiang ◽  
Mei Hu ◽  
...  

AbstractThe problem of bacterial resistance is becoming more and more serious, which has become an urgent problem to be solved in human and veterinary. One approach to control and delay bacterial resistance is combination therapy in which antibiotics are given together with other antimicrobial or non-antimicrobial agents. Studies have shown that flavonoids from Traditional Chinese medicine (TCM) possess a high level of antibacterial activity against antibiotic resistant strains. The aim of this study was to evaluate the antibacterial effects of a combined therapy of total flavonoids from Ilex rotunda Thunb. and antibiotics against seven kinds of veterinary bacteria which were multidrug resistance bacteria. A microdilution checkerboard method was used to determine the minimal inhibitory concentrations of both types of antimicrobials, alone and in combination. The fractional inhibitory concentration index was calculated and used to classify observed collective antibacterial activity as synergistic, additive, indifferent or antagonistic.From the performed tests, the total flavonoids and antimicrobial agents were combined to inhibit different multidrug-resistant bacteria, such as Escherichia coli, Streptococcus, Pseudomonas aeruginosa, Enterococcus faecalis, Proteus vulgaris, Staphylococcus aureus, Acinetobacter baumannii. For these bacteria, total flavonoids from Ilex Rotunda Thunb. presented synergistic or additive with different antibiotics and had a certain antibacterial effect on the separated multidrug-resistant bacteria. The study shows total flavonoids from Ilex rotunda Thunb. have potential as adjuvants for the treatment of animal bacterial diseases.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 912
Author(s):  
Nagaraj Basavegowda ◽  
Kwang-Hyun Baek

Recently, infectious diseases caused by bacterial pathogens have become a major cause of morbidity and mortality globally due to their resistance to multiple antibiotics. This has triggered initiatives to develop novel, alternative antimicrobial materials, which solve the issue of infection with multidrug-resistant bacteria. Nanotechnology using nanoscale materials, especially multimetallic nanoparticles (NPs), has attracted interest because of the favorable physicochemical properties of these materials, including antibacterial properties and excellent biocompatibility. Multimetallic NPs, particularly those formed by more than two metals, exhibit rich electronic, optical, and magnetic properties. Multimetallic NP properties, including size and shape, zeta potential, and large surface area, facilitate their efficient interaction with bacterial cell membranes, thereby inducing disruption, reactive oxygen species production, protein dysfunction, DNA damage, and killing potentiated by the host’s immune system. In this review, we summarize research progress on the synergistic effect of multimetallic NPs as alternative antimicrobial agents for treating severe bacterial infections. We highlight recent promising innovations of multimetallic NPs that help overcome antimicrobial resistance. These include insights into their properties, mode of action, the development of synthetic methods, and combinatorial therapies using bi- and trimetallic NPs with other existing antimicrobial agents.


2020 ◽  
Vol 21 (10) ◽  
pp. 1011-1026
Author(s):  
Bruna O. Costa ◽  
Marlon H. Cardoso ◽  
Octávio L. Franco

: Aminoglycosides and β-lactams are the most commonly used antimicrobial agents in clinical practice. This occurs because they are capable of acting in the treatment of acute bacterial infections. However, the effectiveness of antibiotics has been constantly threatened due to bacterial pathogens producing resistance enzymes. Among them, the aminoglycoside-modifying enzymes (AMEs) and β-lactamase enzymes are the most frequently reported resistance mechanisms. AMEs can inactivate aminoglycosides by adding specific chemical molecules in the compound, whereas β-lactamases hydrolyze the β-lactams ring, preventing drug-target interaction. Thus, these enzymes provide a scenario of multidrug-resistance and a significant threat to public health at a global level. In response to this challenge, in recent decades, several studies have focused on the development of inhibitors that can restore aminoglycosides and β-lactams activity. In this context, peptides appear as a promising approach in the field of inhibitors for future antibacterial therapies, as multiresistant bacteria may be susceptible to these molecules. Therefore, this review focused on the most recent findings related to peptide-based inhibitors that act on AMEs and β-lactamases, and how these molecules could be used for future treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document