scholarly journals In Vitro Antimicrobial Activity of Medicinal Plant Extracts against Some Bacterial Pathogens Isolated from Raw and Processed Meat

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1178
Author(s):  
Ahmed Kh. Meshaal ◽  
Helal F. Hetta ◽  
Ramadan Yahia ◽  
Khamael M. Abualnaja ◽  
Abdallah Tageldein Mansour ◽  
...  

Background and aim: The poultry meat and its products are considered ideal media for bacterial growth and spoilage, as they are highly nutritive with a favorable pH. The food industry has focused its attention on a great diversity of plant species as food preservatives. The aim of this study was to investigate the presence of Staphylococcus aureus, Escherichia coli O157: H7, and Klebsiella pneumonia in food samples and to evaluate of the antibacterial activity of some medicinal plant extracts against these bacteria. Methods: Raw and processed meat samples (n = 60) were collected from abattoirs and local markets. S. aureus, E. coli O157: H7, and K. pneumonia were isolated, identified by phenotypic methods, and then confirmed by 16S rRNA gene sequencing. The antibacterial activity and spectrum of essential oils and spices powder of cumin, black seeds, cloves, cinnamon, and marjoram was determined against the isolated strains in this study by microbial count and well-diffusion techniques. Results: A total of 33 isolates have been identified as S. aureus, 30 isolates were identified as E. coli O157: H7, and 15 isolates were identified as K. pneumonia. S. aureus, E. coli O157: H7, and K. pneumonia could be detected in both fresh and processed food with higher prevalence in the processed meat. There was a significant decrease in microbial count in treated samples either with the spices powder or essential oils of the tested medicinal plants compared to control samples during storage time period. Furthermore, while the microbial count increased in the control samples, the microbial count decreased to reach zero in almost all treated samples with essential oils after 15 days of storage. Conclusion: S. aureus, E. coli O157: H7, and K. pneumonia are associated with food from animal sources, in either fresh or processed meat samples. The prevalence of them was higher in the processed meat than in fresh meat. The essential oils and spices powder of cumin, black seeds, cloves, cinnamon, and marjoram have an in vitro wide spectrum antibacterial activity with the highest antibacterial activity for the black seeds.

2017 ◽  
Vol 1 ◽  
pp. 13
Author(s):  
G. Bachir Raho

The purpose of this research was to evaluate the in vitro antibacterial activity of the essential oils from the resin of Pistacia lentiscus against Staphylococcus aureus (Gram–positive bacteria) and Escherichia coli (Gram–negative bacteria). The agar disc diffusion method was used for microbial growth inhibition at various dilutions of the oils. Results showed that the tested essential oils possess antibacterial activity against S. aureus but inactive on E. coli. These results may have significant implications for the future development of resin oils of P. lentiscus as an antimicrobial agent for the treatment of the infections caused by S. aureus. 


2016 ◽  
Vol 5 (04) ◽  
pp. 4512
Author(s):  
Jackie K. Obey ◽  
Anthoney Swamy T* ◽  
Lasiti Timothy ◽  
Makani Rachel

The determination of the antibacterial activity (zone of inhibition) and minimum inhibitory concentration of medicinal plants a crucial step in drug development. In this study, the antibacterial activity and minimum inhibitory concentration of the ethanol extract of Myrsine africana were determined for Escherichia coli, Bacillus cereus, Staphylococcus epidermidis and Streptococcus pneumoniae. The zones of inhibition (mm±S.E) of 500mg/ml of M. africana ethanol extract were 22.00± 0.00 for E. coli,20.33 ±0.33 for B. cereus,25.00± 0.00 for S. epidermidis and 18. 17±0.17 for S. pneumoniae. The minimum inhibitory concentration(MIC) is the minimum dose required to inhibit growth a microorganism. Upon further double dilution of the 500mg/ml of M. africana extract, MIC was obtained for each organism. The MIC for E. coli, B. cereus, S. epidermidis and S. pneumoniae were 7.81mg/ml, 7.81mg/ml, 15.63mg/ml and 15.63mg/ml respectively. Crude extracts are considered active when they inhibit microorganisms with zones of inhibition of 8mm and above. Therefore, this study has shown that the ethanol extract of M. africana can control the growth of the four organisms tested.


2021 ◽  
Author(s):  
Filippo Fratini ◽  
Margherita Giusti ◽  
Simone Mancini ◽  
Francesca Pisseri ◽  
Basma Najar ◽  
...  

AbstractStaphylococcus aureus and coagulase-negative staphylococci are among the major causes of mastitis in sheep. The main goal of this research was to determine the in vitro antibacterial activity of several essential oils (EOs, n 30), then five of them were chosen and tested alone and in blends against staphylococci isolates. Five bacteria were isolated from episodes of ovine mastitis (two S. aureus and three S. xylosus). Biochemical and molecular methods were employed to identify the isolates and disk diffusion method was performed to determine their antimicrobial-resistance profile. The relative percentage of the main constituents in the tested essential oils and their blends was detected by GC-EIMS analysis. Antibacterial and bactericidal effectiveness of essential oils and blends were evaluated through minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). All of them showed sensitivity to the used antimicrobials. The EOs with the highest antibacterial activity were those belonging to the Lamiaceae family characterized by high concentrations of thymol, carvacrol and its precursor p-cymene, together with cinnamon EO, rich in cinnamaldehyde. In terms of both MIC and MBC values, the blend composed by Thymus capitatus EO 40%, Cinnamomum zeylanicum EO 20%, Thymus serpyllum EO 20% and Satureja montana EO 20% was found to be the most effective against all the isolates. Some essential oils appear to represent, at least in vitro, a valid tool against ovine mastitis pathogens. Some blends showed a remarkable effectiveness than the single oils, highlighting a synergistic effect in relation to the phytocomplex.


1970 ◽  
Vol 1 (4) ◽  
pp. 82-88 ◽  
Author(s):  
MJ Foysal ◽  
MM Rahman ◽  
M Alam

Studies were conducted to identify Pseudomonas fluorescens isolates from a collection of bacteria isolated from bacterial haemorrhagic septicaemia infected carp and catfish, evaluate their antibiotic sensitivity pattern and screen the antibacterial activity of some medicinal plant extracts against the isolates.. A total of 10 isolates were identified as P. fluorescens by morphological, physiological and biochemical tests. In vitro antibiotic sensitivity test of the P. fluorescens isolates were conducted by disc diffusion method for seven antibiotics where, all of the isolates were found to be sensitive only against streptomycin and gentamycin but, most of the isolates (80%) were found resistant to chloramphenicol (C). Moreover, eighty percent of the isolates showed resistance to multiple antibiotics. A total of 118 plant extracts were screened for their antibacterial activity against the P. fluorescens isolates where the isolates exhibited sensitivity to 30 samples. Leaf extracts of Tamarindus indicus, Terminalia chebula, Citrus aurantifolia, Eugenia caryophyllata and Spondias pinnata were found to inhibit the growth of all of the P. fluorescens isolates. DOI: http://dx.doi.org/10.3329/ijns.v1i4.9733 IJNS 2011 1(4): 82-88


2020 ◽  
Vol 18 (1) ◽  
pp. 36
Author(s):  
ENNY WILLIANTI ◽  
THEODORA THEODORA ◽  
WAHYUNI DYAH PARMASARI

<p><strong>ABSTRACT</strong><strong></strong></p><p><strong> </strong></p><p><strong>Background</strong>: Betel leaf contains essential oils consisting of bethelphenol, kavikol, sesquiterpenes, hydroxycavikol, cavibetol, estragol, eugenol and carvacrol. Essential oils are antibacterial due to the presence of phenol compounds and their derivatives that can denature the bacterial cell proteins. Basil leaves contain compounds from essential oils, namely 1,8-cineole, ß-bisabolene, and methyl eugenol. These three ingredients are soluble to ethanol and can cause damage to the cell membranes of the Streptococcus mutans bacteria, which are members of the normal oral flora but can turn into pathogens if the balance of normal flora is disturbed. The aim of this study was to determine the difference in the activity of the antibacterial  of decoction betel leaf (piper betle L. ) with a decoction of basil leaves (ocimum sanctum) against growth of bacteria <em>Streptococcus mutans</em> (in vitro study).</p><p><strong>M</strong><strong>ethod:</strong> this observational research with disk diffusion techniques. This study observed and measured the diameter of the inhibitory zone in MHA formed by decoction of betel leaf (piper betle L) and basil leaf (ocimum sanctum) in units of millimeters (mm). There were 2 groups with 16 replications.</p><p><strong>R</strong><strong>esults</strong>: the results of the description test showed that the antibacterial activity of the betel leaf decoction and the highest decoction of basil leaf was 17 mm and the lowest was 15 mm, but the average antibacterial value of betel leaf decoction (15,81) greater than the average value of antibacterial activity of basil leaf (15.75). This is because there are chemicals contained in betel leaf similar as contained in basil leaf, namely essential oils.</p><p><strong>Conclusion</strong>: there is no difference in the antibacterial activity of decoction  betel leaf with decoction basil leaf against growth of bacteria <em>Streptococcus mutans</em>.</p><p><strong> </strong></p><p><strong>Keywords</strong>: Betel leaf decoction, basil leaf  decoction, Streptococcus <strong>mutans.      </strong></p><p><strong> </strong></p><p><strong> </strong></p><p><strong>Abstrak</strong><strong></strong></p><p><strong> </strong></p><p><strong>Latar Belakang</strong>: Daun sirih mengandung minyak atsiri yang terdiri dari <em>bethelphenol, kavikol, </em>seskuiterpen, hydroxycavikol,cavibetol, estragol, eugenol dan carvacrol. Minyak atsiri bersifat antibakteri karena adanya senyawa phenol dan turunannya yang dapat mendenaturasi protein sel bakteri. Daun kemangi mengandung senyawa dari minyak atsiri yaitu <em>1,8-cineole</em>, <em>ß-bisabolene</em>, <em>metyl eugenol</em>. Ketiga bahan tersebut memiliki sifat larut terhadap etanol dan dapat menyebabkan kerusakan membran sel bakteri <em>streptococcus mutans</em> yang merupakan anggota flora normal rongga mulut tetapi dapat berubah menjadi patogen jika keseimbangan flora normal terganggu.Tujuan penelitian ini untuk mengetahui perbedaan aktivitas antibakteri rebusan daun sirih (<em>piper betle</em> L) dengan rebusan daun kemangi (<em>ocimum sanctum</em>) terhadap pertumbuhan bakteri <em>Streptococcus mutans</em> (penelitian in vitro).</p><p><strong>Metode</strong>: penelitian observasional ini dengan teknik difusi. Penelitian ini dilakukan dengan mengamati dan mengukur diameter zona hambat pada MHA yang dibentuk oleh rebusan daun sirih (<em>piper betle</em> L) dan daun kemangi (<em>ocimum sanctum</em>) dalam satuan milimeter (mm). Terdapat 2 kelompok dengan replikasi sebanyak 16.</p><p><strong>Hasil</strong> : Hasil uji deskripsi menunjukkan bahwa aktivitas antibakteri pada rebusan daun sirih maupun rebusan daun kemangi yang tertinggi sebesar 17 mm dan yang terendah 15 mm. Tetapi pada nilai rata-rata efektifitas antibakteri rebusan daun sirih (15,81) lebih besar daripada nilai rata-rata efektifitas antibakteri rebusan daun kemangi (15,75). Hal ini dikarenakan ada zat kimia yang terkandung dalam daun sirih mirip dengan yang terkandung dalam daun kemangi, yaitu minyak atsiri.</p><p><strong>Kesimpulan</strong> : tidak ada perbedaan aktivitas antibakteri rebusan daun sirih dengan rebusan daun kemangi terhadap pertumbuhan bakteri <em>Streptococcus </em><em>m</em><em>utans</em>.</p><p><strong> </strong></p><p><strong>Kata kunci</strong>:  rebusan daun sirih, rebusan daun kemangi<em>, Streptococcus mutans</em>.</p><p> </p><p>     </p>


2019 ◽  
Vol 10 (2) ◽  
pp. 1049-1053 ◽  
Author(s):  
Geetha RV ◽  
John Rozar Raj B ◽  
Lakshmi Thangavelu

To conduct a study regarding the antibacterial activity of essential oils against bacteria causing Caries. Essential oils are distillates of the volatile compounds of a plant’s secondary metabolism and may act as photoprotective agents. Their curative effect has been known since antiquity. It is based on a variety of pharmacological properties which are specific for each plant species. The mouth contains a variety of oral bacteria, but only a few species of bacteria are believed to cause dental caries. Antibacterial activity of the three essential oils, Rosemary oil, Holy basil oil, Thyme oil was screened against Streptococcus mutans, using disc diffusion technique. The rosemary oil was more effective against Streptococcus mutans with a zone of inhibition of 52 mm diameter (at concentration 200 µl), Rosemary oil showed a zone of inhibition of 44 mm diameter and with thyme oil, the zone diameter was 30 mm. The results of this study showed that the essential oils at different concentrations exhibited antibacterial activity against the bacterial species tested.


2021 ◽  
Vol 74 (9) ◽  
pp. 2109-2111
Author(s):  
Evheniia A. Shtaniuk ◽  
Oleksandra O. Vovk ◽  
Larisa V. Krasnikova ◽  
Yuliia I. Polyvianna ◽  
Tetiana I. Kovalenko

The aim: Study of antibacterial activity of the preparations, containing antiseptic dioxidine and antibiotic levofloxacin in vitro on standard strains of main optional-anaerobic pathogens of purulent-inflammatory processes of surgical wounds S. aureus, E. coli, P. aeruginosa and definition of more effective ones on them. Materials and methods: Solutions of dioxidine 1.2 %, dioxidine 1.2% with decamethaxin, Dioxisole, water soluble ointment with dioxidine 1.2% and levofloxacin 0.1% with decamethaxin were used in experiment. Antibacterial activity was studied on standard strains of S. aureus АТСС 25923, E. coli АТСС 25922, P. aeruginosa АТСС 27853. Distinguishing and identification of pure cultures of bacteria was done according to generally accepted microbiological methods. Determination of purulent-inflammatory processes pathogens sensitivity was done by disco-diffuse method on Mueller-Hinton medium. Antibacterial activity of solutions and ointments was studied with the help of agar diffusion method (“well” method) according to methodic recommendations. Each investigation was repeated 6 times. Method of variation statistics was used for the research results analysis. Results: All antibacterial preparations under study are effective and highly effective on S. aureus АТСС 25923, E. coli АТСС 25922, P. aeruginosa АТСС 27853. Solution with 1.2 % dioxidine with decamethaxin and ointment with 0.1 % levofloxacin and decamethaxin have larger growth retardation zones towards S. aureus and P. aeruginosa. E. coli strains are more sensitive to the solution of Dioxisole and ointment with 1.2 % dioxidine. Conclusions: All strains are sensitive, most of them are highly sensitive, up to 5 antibacterial preparations under study in vitro.


Author(s):  
Fatima El Kamari ◽  
Amal Taroq ◽  
Yassine El Atki ◽  
Imane Aouam ◽  
Badiaa Lyoussi ◽  
...  

Objective: The aim of the current study is to determine the chemical composition and evaluate antibacterial activity of Vitex agnus-castus L. (VAC) essential oils against some bacteria causing nosocomial infections in the neonatal and intensive care rooms at the university hospital center of Fez Morocco. Methods: The phytochemical screening of essential oils was determined using gas chromatography (GC) and GC-mass spectrometry analysis. The antibacterial test was evaluated against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria species (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Proteus mirabilis) using disc diffusion method. Results: Twenty-nine components were identified in the fruits’ oil representing 93.1% of total oil. The major components in the fruits oil are 1,8-cineole (11.6%), α-thujene (9.3%), phyllocladene (8.2%), α-pinene (7.9%), caryophyllene (5.9%), and cubenol (5%). Furthermore, 28 components were identified in the leaf essential oil. The main component was caryophyllene (9.5%), followed by 1,8-cineole (8.7%), manoyl oxide (7.3%), eugenyl acetate (7.1%), phyllocladene (6.8%), and α-pinene (5.2%). Antibacterial activity of both oils showed a strong activity against nosocomial bacteria tested. Conclusion: Essential oils of Moroccan VAC could be exploited as natural drugs for bacteria, especially those who have acquired resistance to conventional antibiotics.


2019 ◽  
Vol 24 ◽  
pp. 2515690X1988627 ◽  
Author(s):  
Mekonnen Sisay ◽  
Negussie Bussa ◽  
Tigist Gashaw ◽  
Getnet Mengistu

Medicinal plants are targeted in the search for new antimicrobial agents. Nowadays, there is an alarmingly increasing antimicrobial resistance to available agents with a very slow development of new antimicrobials. It is, therefore, necessary to extensively search for new agents based on the traditional use of herbal medicines as potential source. The antibacterial activity of 80% methanol extracts of the leaves of Verbena officinalis (Vo-80ME), Myrtus communis (Mc-80ME), and Melilotus elegans (Me-80ME) was tested against 6 bacterial isolates using agar well diffusion technique. In each extract, 3 concentrations of 10, 20, and 40 mg/well were tested for each bacterium. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were also determined. Vo-80ME and Mc-80ME exhibited promising antibacterial activity against Staphylococcus aureus with the highest zone of inhibition being 18.67 and 26.16 mm, respectively at concentration of 40 mg/well. Regarding gram-negative bacteria, Vo-80ME exhibited an appreciable activity against Escherichia coli and Salmonella typhi. Mc-80ME displayed remarkable activity against all isolates including Pseudomonas aeruginosa with the maximum zone of inhibition being 22.83 mm. Me-80ME exhibited better antibacterial activity against E coli, but its secondary metabolites had little or no activity against other gram-negative isolates. The MIC values of Vo-80ME ranged from 0.16 to 4.00 mg/mL. The lowest MIC was observed in Mc-80ME, with the value being 0.032 mg/mL. Mc-80ME had bactericidal activity against all tested bacterial isolates. Mc-80ME showed remarkable zone of inhibitions in all tested bacterial isolates. Besides, Vo-80ME showed good antibacterial activity against S aureus, E coli, and S typhi. Conversely, Me-80ME has shown good activity against E coli only. Generally, M communis L and V officinalis have good MIC and MBC results.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 272 ◽  
Author(s):  
Ramona Iseppi ◽  
Alessandro Di Cerbo ◽  
Piero Aloisi ◽  
Mattia Manelli ◽  
Veronica Pellesi ◽  
...  

The aim of this study was to analyze the antibacterial activity of four essential oils (EOs), Melaleuca alternifolia, Eucalyptus globulus, Mentha piperita, and Thymus vulgaris, in preventing the development and spread of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae, metallo-beta-lactamase (MBL)-producing Pseudomonas aeruginosa and carbapenemase (KPC)-producing Klebsiella pneumoniae. A total of 60 strains were obtained from the stock collection from the Microbiology Laboratory of Hesperia Hospital, Modena, Italy. Twenty ESBL-producing E. coli, 5 K. pneumoniae, 13 KPC-producing K. pneumoniae, and 20 MBL-producing P. aeruginosa were cultured and reconfirmed as ESBL and carbapenamase producers. Polymerase chain reaction was used for the detection of genes responsible for antibiotic resistance (ESBL and KPC/MBL). Antibacterial activity of the EOs was determined using the agar disk diffusion assay, and minimal inhibitory concentrations (MICs) were also evaluated. Lastly, adhesion capability and biofilm formation on polystyrene and glass surfaces were studied in 24 randomly selected strains. M. alternifolia and T. vulgaris EOs showed the best antibacterial activity against all tested strains and, as revealed by agar disk diffusion assay, M. alternifolia was the most effective, even at low concentrations. This effect was also confirmed by MICs, with values ranging from 0.5 to 16 µg/mL and from 1 to 16 µg/mL, for M. alternifolia and T. vulgaris EOs, respectively. The EOs’ antibacterial activity compared to antibiotics confirmed M. alternifolia EO as the best antibacterial agent. T. vulgaris EO also showed a good antibacterial activity with MICs lower than both reference antibiotics. Lastly, a significant anti-biofilm activity was observed for the two EOs (*P < 0.05 and **P < 0.01 for M. alternifolia and T. vulgaris EOs, respectively). A good antibacterial and anti-biofilm activity of M. alternifolia and T. vulgaris EOs against all selected strains was observed, thus demonstrating a future possible use of these EOs to treat infections caused by ESBL/carbapenemase-producing strains, even in association with antibiotics.


Sign in / Sign up

Export Citation Format

Share Document