scholarly journals Surface Oxidation of TiNiSn (Half-Heusler) Alloy by Oxygen and Water Vapor

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2296 ◽  
Author(s):  
Oshrat Appel ◽  
Shai Cohen ◽  
Ofer Beeri ◽  
Noah Shamir ◽  
Yaniv Gelbstein ◽  
...  

TiNiSn-based half-Heusler semiconducting compounds have the highest potential as n-type thermoelectric materials for the use at elevated temperatures. In order to use these compounds in a thermoelectric module, it is crucial to examine their behaviour at a working temperature (approximately 1000 K) under oxygen and a humid atmosphere. Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were utilized to study the surface composition and oxidation of the TiNiSn alloy at elevated temperatures. It was found that during heating in vacuum, Sn segregates to the surface. Exposing the alloy to oxygen at room temperature will cause surface oxidation of Ti to TiO2 and Ti2O3 and some minor oxidation of Sn. Oxidation at 1000 K induces Ti segregation to the surface, creating a titanium oxide layer composed of mainly TiO2 as well as Ti2O3 and TiO. Water vapor was found to be a weaker oxidative gas medium compared to oxygen.

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1509 ◽  
Author(s):  
Oshrat Appel ◽  
Gil Breuer ◽  
Shai Cohen ◽  
Ofer Beeri ◽  
Theodora Kyratsi ◽  
...  

The MNiSn (M = Ti; Zr; Hf); half-Heusler semiconducting alloys have a high potential for use as n-type thermoelectric materials at elevated temperatures (~1000 K). The alloys’ durability is crucial for their commercial handling and use, and therefore it is required to characterize their surface oxidation behavior and stability at the working temperature. X-ray photoelectron spectroscopy was utilized to study the surface composition and oxidation of the ZrNiSn alloy at room and elevated temperatures. It was found that during heating in a vacuum, Sn segregates to the surface in order to reduce the surface energy. Exposing the alloy to oxygen resulted mainly in the oxidation of the zirconium to ZrO2, as well as some minor oxidation of Sn. At room temperature, the oxidation to ZrO2 was accompanied by the formation of a thin ZrO layer at the metal-oxide interface. In contrast to TiNiSn, where most of the oxide was formed on the surface due to oxygen-enhanced segregation of Ti, and in the case of ZrNiSn, the formed oxide layer was thinner. Part of the oxide is formed due to Zr segregation to the surface, and in part due to oxygen dissolved into the alloy.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3942
Author(s):  
Oshrat Appel ◽  
Shai Cohen ◽  
Ofer Beeri ◽  
Yaniv Gelbstein ◽  
Shimon Zalkind

The MNiSn (M = Ti, Zr, Hf) n-type semiconductor half-Heusler alloys are leading candidates for the use as highly efficient waste heat recovery devices at elevated temperatures. For practical applications, it is crucial to consider also the environmental stability of the alloys at working conditions, and therefore it is required to characterize and understand their oxidation behavior. This work is focused on studying the surface composition and the initial oxidation of HfNiSn alloy by oxygen and water vapor at room temperature and at 1000 K by utilizing X-ray photoelectron spectroscopy. During heating in vacuum, Sn segregated to the surface, creating a sub-nanometer overlayer. Exposing the surface to both oxygen and water vapor resulted mainly in Hf oxidation to HfO2 and only minor oxidation of Sn, in accordance with the oxide formation enthalpy of the components. The alloy was more susceptible to oxidation by water vapor compared to oxygen. Long exposure of HfNiSn and ZrNiSn samples to moderate water vapor pressure and temperature, during system bakeout, resulted also in a formation of a thin SnO2 overlayer. Some comparison to the oxidation of TiNiSn and ZrNiSn, previously reported, is given.


2020 ◽  
Author(s):  
Jennifer A. Rudd ◽  
Ewa Kazimierska ◽  
Louise B. Hamdy ◽  
Odin Bain ◽  
Sunyhik Ahn ◽  
...  

The utilization of carbon dioxide is a major incentive for the growing field of carbon capture. Carbon dioxide could be an abundant building block to generate higher value products. Herein, we describe the use of porous copper electrodes to catalyze the reduction of carbon dioxide into higher value products such as ethylene, ethanol and, notably, propanol. For <i>n</i>-propanol production, faradaic efficiencies reach 4.93% at -0.83 V <i>vs</i> RHE, with a geometric partial current density of -1.85 mA/cm<sup>2</sup>. We have documented the performance of the catalyst in both pristine and urea-modified foams pre- and post-electrolysis. Before electrolysis, the copper electrode consisted of a mixture of cuboctahedra and dendrites. After 35-minute electrolysis, the cuboctahedra and dendrites have undergone structural rearrangement. Changes in the interaction of urea with the catalyst surface have also been observed. These transformations were characterized <i>ex-situ</i> using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. We found that alterations in the morphology, crystallinity, and surface composition of the catalyst led to the deactivation of the copper foams.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1456
Author(s):  
Yujie Fu ◽  
You Zhang ◽  
Qi Xin ◽  
Zhong Zheng ◽  
Yu Zhang ◽  
...  

Chlorinated volatile organic compounds (CVOCs) are vital environmental concerns due to their low biodegradability and long-term persistence. Catalytic combustion technology is one of the more commonly used technologies for the treatment of CVOCs. Catalysts with high low-temperature activity, superior selectivity of non-toxic products, and resistance to chlorine poisoning are desirable. Here we adopted a plasma treatment method to synthesize a tin-doped titania loaded with ruthenium dioxide (RuO2) catalyst, possessing enhanced activity (T90%, the temperature at which 90% of dichloromethane (DCM) is decomposed, is 262 °C) compared to the catalyst prepared by the conventional calcination method. As revealed by transmission electron microscopy, X-ray diffraction, N2 adsorption, X-ray photoelectron spectroscopy, and hydrogen temperature-programmed reduction, the high surface area of the tin-doped titania catalyst and the enhanced dispersion and surface oxidation of RuO2 induced by plasma treatment were found to be the main factors determining excellent catalytic activities.


CORROSION ◽  
10.5006/3881 ◽  
2021 ◽  
Author(s):  
Zachary Karmiol ◽  
Dev Chidambaram

This work investigates the oxidation of a nickel based superalloy, namely Alloy X, in water at elevated temperatures: subcritical water at 261°C and 27 MPa, the transition between subcritical and supercritical water at 374°C and 27 MPa, and supercritical water at 380°C and 27 MPa for 100 hours. The morphology of the sample surfaces were studied using scanning electron microscopy coupled with focused ion beam milling, and the surface chemistry was investigated using X-ray diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy before and after exposure studies. Surfaces of all samples were identified to comprise of a ferrite spinel containing aluminum.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1725 ◽  
Author(s):  
Xiaohong Liu ◽  
Ming Li ◽  
Xuemei Zheng ◽  
Elias Retulainen ◽  
Shiyu Fu

As a type of functional group, azo-derivatives are commonly used to synthesize responsive materials. Cellulose nanocrystals (CNCs), prepared by acid hydrolysis of cotton, were dewatered and reacted with 2-bromoisobuturyl bromide to form a macro-initiator, which grafted 6-[4-(4-methoxyphenyl-azo) phenoxy] hexyl methacrylate (MMAZO) via atom transfer radical polymerization. The successful grafting was supported by Fourier transform infrared spectroscopy (FT-IR) and Solid magnetic resonance carbon spectrum (MAS 13C-NMR). The morphology and surface composition of the poly{6-[4-(4-methoxyphenylazo) phenoxy] hexyl methacrylate} (PMMAZO)-grafted CNCs were confirmed with Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The grafting rate on the macro-initiator of CNCs was over 870%, and the polydispersities of branched polymers were narrow. The crystal structure of CNCs did not change after grafting, as determined by X-ray diffraction (XRD). The polymer PMMAZO improved the thermal stability of cellulose nanocrystals, as shown by thermogravimetry analysis (TGA). Then the PMMAZO-grafted CNCs were mixed with polyurethane and casted to form a composite film. The film showed a significant light and pH response, which may be suitable for visual acid-alkali measurement and reversible optical storage.


2018 ◽  
Vol 122 (10) ◽  
pp. 2695-2702 ◽  
Author(s):  
E. Antonsson ◽  
C. Raschpichler ◽  
B. Langer ◽  
D. Marchenko ◽  
E. Rühl

2006 ◽  
Vol 600 (18) ◽  
pp. 3749-3752 ◽  
Author(s):  
C. Biswas ◽  
S. Banik ◽  
A.K. Shukla ◽  
R.S. Dhaka ◽  
V. Ganesan ◽  
...  

2014 ◽  
Vol 16 (39) ◽  
pp. 21486-21495 ◽  
Author(s):  
Josephina Werner ◽  
Jan Julin ◽  
Maryam Dalirian ◽  
Nønne L. Prisle ◽  
Gunnar Öhrwall ◽  
...  

The water–vapor interface of aqueous solutions of succinic acid, where pH values and bulk concentrations were varied, has been studied using surface sensitive X-ray photoelectron spectroscopy (XPS) and molecular dynamics (MD) simulations.


Author(s):  
Changqing Liu ◽  
David A. Hutt ◽  
Dezhi Li ◽  
Paul P. Conway

This paper aims to gain an insight into the correlation between the microstructure and surface composition of electroless Ni-P and its behaviour during soldering with Pb free alloys including Sn-3.8Ag-0.7Cu, Sn-3.5Ag and Sn-0.7Cu. Ni-P coatings with different P contents were produced through an industrial process on copper metal substrates. The surface morphology of these coatings was observed by Scanning Electron Microscopy (SEM) and the bulk composition was analyzed by means of Energy Dispersive X-ray analysis (EDX). The mechanical properties of the coatings were evaluated by nano-indentation testing under different maximum loads. However, to understand the behaviour of P in Ni-P coatings and deterioration of the coating surfaces during exposure to air, the surfaces of the coatings were also characterised by X-ray Photoelectron Spectroscopy (XPS) for storage at different temperatures. The dependence of the solderability of Ni-P coatings on the storage time and temperature was investigated by wetting balance testing, using an inactive or active flux with or without an inert N2 atmosphere. Finally, the solderability of Ni-P coatings to Pb free solders is correlated with their composition and microstructure (e.g. surface characteristics).


Sign in / Sign up

Export Citation Format

Share Document