scholarly journals Effect of Samarium on the Microstructure and Corrosion Resistance of AZ91 Magnesium Alloy Treated by Ultrasonic Vibration

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2331 ◽  
Author(s):  
Yang Chen ◽  
Zheng Yin ◽  
Hong Yan ◽  
Guo-Hua Zhou ◽  
Xiao-Quan Wu ◽  
...  

The effects of samarium (Sm) on the microstructure and corrosion behavior of AZ91 magnesium alloy treated by ultrasonic vibration were investigated by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and electrochemical measurements. The results showed that the addition of Sm resulted in the formation of Al2Sm, which reduced the volume fraction of the β-Mg17Al12 phase and changed its morphology to fine granular. The AZ91–Sm alloys treated by ultrasonic vibration revealed relatively lower weight loss, hydrogen evolution, and corrosion current density values compared to the ultrasonic-treated AZ91 alloy prepared without Sm. Locally, a coarse β phase in the ultrasonic-treated AZ91 alloy accelerated the possibility of micro-galvanic corrosion growing into the matrix. In the prepared AZ91–Sm alloys treated by ultrasonic vibration, the fine β and Al2Sm phases reduced the probability of micro-galvanic corrosion growth and, therefore, formed a uniform corrosion layer on the surface of the alloys.

2017 ◽  
Vol 898 ◽  
pp. 1369-1380 ◽  
Author(s):  
Hui Min Han ◽  
Dan Tong Wang ◽  
Hua Qian Yu ◽  
Min Zuo ◽  
Li Hong Wang ◽  
...  

The ceria coatings on AZ91 substrates were successfully synthesized by chemical conversion and the corrosion resistance of AZ91 samples with and without ceria coatings were evaluated by means of electrochemical corrosion in 3.5 wt.% NaCl solution. According to the parameters derived from the polarization date, the Icorr (the corrosion current density) values of the coated samples are smaller than that of bare one, indicating that the corrosion resistance of AZ91 alloys has been improved to some extent. The influence of fluoridated pretreatment, inter-layer heat treatment, sintering temperature and the layer of films on the performance of ceria coatings were also investigated. It was found that the inter-layer heat treatment has no influence on improving the anticorrosion resistance of AZ91 alloy. In comparison with the bare one, the Icorr of optimal sample is about 0.0219mA/cm2, which decreases by two orders of magnitude, indicating that the ceria coatings could significantly improve the corrosion resistance of AZ91 magnesium alloy.


2011 ◽  
Vol 311-313 ◽  
pp. 1457-1461
Author(s):  
Xiu Lan Ai ◽  
Gao Feng Quan ◽  
Jun Yang

Ti addition to AZ91 alloy was been investigated with conventional casting. The Corrosion resistance of all the different Ti addition content alloy was studied in 3.5% NaCl solution through weight loss measurement in constant immersion conditions and potentiodynamic polarization experiments.The results show that addition of Ti with an amount of 0.1~0.8wt% the corrosion resistant of alloy was improved. In the case of AZ91-0.8Ti alloy had minimum corrosion rate value , AZ91-0.4Ti alloy had minimim corrosion current density. After Ti added into alloy, the morphology of β phases was changed, TiAl3intermetallics appeared. The inhibiting effect of the β phases and TiAl3intermetallics in the AZ91-Ti alloy predominated in the long period immersion testing, but during short interval of electrochemical testing galvanic corrosion effect in the AZ91-Ti alloy predominated.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 536
Author(s):  
Andrzej Kiełbus ◽  
Robert Jarosz ◽  
Adam Gryc

Refinement of α-Mg solid solution grains has a significant influence on the improvement of mechanical properties of cast magnesium alloys. In the article, the effects of three modifiers on microstructure and properties of AZ91 magnesium alloy casted to a sand mould were described. Overheating, hexachloroethane and wax-CaF2-carbon powder were applied. The research procedure comprised microstructure analysis by means of light microscopy, scanning electron microscopy and quantitative analysis with AnalySIS Pro® software and mechanical properties’ investigation. The microstructure of AZ91 alloy in the as-cast condition consists of α-Mg solid solution with precipitates of Mg17Al12, Mg2Si and Al8Mn5 phases. It was reported that all applied modifiers cause refinement of α-Mg solid solution grains and a decrease of the volume fraction of α-Mg+Mg17Al12 compound discontinuous precipitates. The best results were obtained in the case of wax-CaF2-carbon powder.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4010
Author(s):  
Grzegorz Banaszek ◽  
Teresa Bajor ◽  
Anna Kawałek ◽  
Tomasz Garstka

This paper presents the results of numerical tests of the process of forging magnesium alloy ingots (AZ91) on a hydraulic press with the use of flat and proprietary shaped anvils. The analysis of the hydrostatic pressure distribution and the deformation intensity was carried out. It is one of the elements used for determining the assumptions for the technology of forging to obtain a semi-finished product from the AZ91 alloy with good strength properties. The aim of the research was to reduce the number of forging passes, which will shorten the operation time and reduce the product manufacturing costs. Numerical tests of the AZ91 magnesium alloy were carried out using commercial Forge®NxT software.


2016 ◽  
Vol 16 (1) ◽  
pp. 13-18
Author(s):  
J. Iwaszko ◽  
M. Strzelecka

Abstract In this study, modification of the AZ91 magnesium alloy surface layer with a CO2 continuous wave operation laser has been taken on. The extent and character of structural changes generated in the surface layer of the material was being assessed on the basis of both macro- and microscopy investigations, and the EDX analysis. Considerable changes in the structure of the AZ91 alloy surface layer and the morphology of phases have been found. The remelting processing was accompanied by a strong refinement of the structure and a more uniform distribution of individual phases. The conducted investigations showed that the remelting zone dimensions are a result of the process parameters, and that they can be controlled by an appropriate combination of basic remelting parameters, i.e. the laser power, the distance from the sample surface, and the scanning rate. The investigations and the obtained results revealed the possibility of an effective modification of the AZ91 magnesium alloy surface layer in the process of remelting carried out with a CO2 laser beam.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 789 ◽  
Author(s):  
Farzad Soleymani ◽  
Rahmatollah Emadi ◽  
Sorour Sadeghzade ◽  
Fariborz Tavangarian

Magnesium alloys have received a great amount of attention regarding being used in biomedical applications; however, they show high degradability, poor bioactivity, and biocompatibility. To improve these properties, surface modification and various types of coatings have been applied. In this study, an anodized AZ91 alloy was coated with a polymer matrix composite made of polycaprolactone/chitosan (PCL/Ch) with different percentages of baghdadite to improve its resistance to corrosion, bioactivity, and biocompatibility. The effects of different percentages of baghdadite (0 wt %, 1 wt %, 3 wt %, and 5 wt %) on the surface microstructure, corrosion resistance, roughness, and wettability were evaluated. The results indicated that the applied nano-polymer-ceramic coating including 3 wt % baghdadite was hydrophobic, which consequently increased the corrosion resistance and decreased the corrosion current density of the anodized AZ91 alloy. Coating with 3 wt % baghdadite increased the roughness of AZ91 from 0.329 ± 0.02 to 7.026 ± 0.31 μm. After applying the polymer-ceramic coating on the surface of anodized AZ91, the corrosion products changed into calcium–phosphate compounds instead of Mg(OH)2, which is more stable in a physiological environment.


2011 ◽  
Vol 418-420 ◽  
pp. 786-791 ◽  
Author(s):  
Lin Lei Wang ◽  
Xiu Bing Liang ◽  
Shi Cheng Wei ◽  
Yong Xiong Chen ◽  
Wei Guo ◽  
...  

An automatic high velocity arc spraying process was used to deposit a type of FeCrBSiMoNbW amorphous/nanocrystalline coating with substrate of AZ91 magnesium alloy. The microstructure of the coating was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDAX). The coating is about 250μm in thickness with low porosity and oxids. The results show that the microstructure of the coating can be classified into two regions, namely, a full amorphous phase region and homogeneous dispersion of α-Fe (Cr) nanocrystals with 30-80 nm in a residual amorphous region. Mechanical properties, such as nano-hardness, elastic modulus, were analyzed. The experimental results show that the coating has high nano-hardness and elastic modulus. The friction and wear experiments were operated on UMT-2 micro friction tester. The relative wear resistance of the FeCrBSiMoNbW coating is about 2 times higher than that of the conventional 3Cr13 coating under the same conditions. The main wear mechanism of the amorphous/nanocrystalline coating is the typical brittle spalling.


Author(s):  
Mohd Imran Ansari ◽  
Dineshsingh G Thakur

Incorporation of fine nanoparticles and cationic surfactant (Aliquat 336) within an ENi–P matrix has given a new dimension to the field of nanocomposite coatings. It describes the surface engineering processes currently used for the protection of AZ91 magnesium alloy surface against wear, including electroless nano-composite coatings. The present work aims to investigate the influence of Aliquat 336 cationic surfactant on the microhardness and tribological properties of electroless (Ni–P–ZnO) ternary alloy nanocomposite coatings on AZ91 magnesium alloy substrate from acidic bath. The results revealed that there was a significant improvement in the microhardness and wear resistance of the coated surface by the addition of cationic surfactant at a concentration of 1.5 g/L as compared to the coating obtained without the addition of cationic surfactant in the chemical bath. These results are thus clearly indicative of the fact that the component of life of members made from substrate subjected to nanocomposite coatings with varying the concentration of surfactant can be greatly improved, thereby preventing early or regular failures, and increasing service life.


2007 ◽  
Vol 546-549 ◽  
pp. 155-158
Author(s):  
Qu Dong Wang ◽  
Yang Zhao ◽  
Qing Hua Li

Effects of CaCO3 modificator on microstructure and mechanical properties of cast AZ91 Magnesium alloy have been investigated. Tensile fracture behavior of AZ91 alloys modified by CaCO3 has also been studied. Results show that CaCO3 modificator can obviously refine the grain of AZ91 magnesium alloy and Mg17Al12. Mg17Al12 in grain boundary of AZ91 alloy after modified by CaCO3 changes from continuous reticular structure to discontinuous reticular structure, even so much as granular structure and rod structure. After modified by 0.5wt% CaCO3 modificator, ultimate tensile strength, yield strength, impact toughness and elongation of AZ91 alloy increase from 186MPa to 200MPa, from 147MPa to 160MPa, from 4J to 9J and from 2.6% to 5%, respectively. And 0.5wt% CaCO3 modificator brings about an optimal refining effect. The study also shows that the fracture mechanism of modified AZ91 alloy is between cleavage fracture and quasi-cleavage fracture, which is as same as that of unmodified AZ91 alloy.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1357 ◽  
Author(s):  
Jaromír Wasserbauer ◽  
Martin Buchtík ◽  
Jakub Tkacz ◽  
Stanislava Fintová ◽  
Jozef Minda ◽  
...  

The corrosion behavior of duplex Ni-P coatings deposited on AZ91 magnesium alloy was studied. The electroless deposition process of duplex Ni-P coating consisted in the preparation of low-phosphorus Ni-P coating (5.7 wt.% of P), which served as a bond coating and high-phosphorus Ni-P coating (11.5 wt.% of P) deposited on it. The duplex Ni-P coatings with the thickness of 25, 50, 75 and 100 µm were deposited on AZ91 magnesium alloy. The electrochemical corrosion behavior of coated AZ91 magnesium alloy was investigated by electrochemical impedance spectroscopy and potentiodynamic polarization method in 0.1 M NaCl. Obtained results showed a significant improvement in the corrosion resistance of coated specimens when compared to uncoated AZ91 magnesium alloy. From the results of the immersion tests in 3.5 wt.% NaCl, 10% solution of HCl and NaOH and 5% neutral salt spray, a noticeable increase in the corrosion resistance with the increasing thickness of the Ni-P coating was observed.


Sign in / Sign up

Export Citation Format

Share Document