scholarly journals Effects of Aluminum Sulfate and Quicklime/Fluorgypsum Ratio on the Properties of Calcium Sulfoaluminate (CSA) Cement-Based Double Liquid Grouting Materials

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1222 ◽  
Author(s):  
Yuli Wang ◽  
Jie Yu ◽  
Junjie Wang ◽  
Xuemao Guan

Grouting materials are used frequently in grouting reinforcement projects, such as mining and coastal engineering. Double liquid grouting materials are mostly used because of the fast setting and high early strength properties when the two slurries are mixed together but high fluidity when the two slurries are separated. In our study, double liquid grouting materials were developed from CSA cement (slurry A), quicklime and fluorgypsum (slurry B). Aluminum sulfate was added in slurry B in order to counteract any adverse effects caused by the fluorgypsum, such as the decreased early compressive strength and the prolonged setting time. The effects of aluminum sulfate content and the quicklime/fluorgypsum ratio on the setting time, hydration heat, and compressive strength of the double liquid grouting materials were investigated, and the hydration products were characterized through thermogravimetry-differential thermal analysis (TG-DTA), X-ray Diffraction (XRD), and Scanning Electron Microscope (SEM) tests. The results show that the addition of aluminum sulfate can shorten the setting time and increase compressive strength at both early and later ages. Considering the setting time and compressive strength of double liquid grouting material at the same time, the optimum content of aluminum sulfate was found to be 2%, and the optimum ratio of quicklime/fluorgypsum was found to be 2:8. The values of the optimum content of aluminum sulfate and ratio of quicklime/fluorgypsum were verified from theoretical analysis.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bin Liu ◽  
Liming Yin ◽  
Juntao Chen ◽  
Ming Li ◽  
Daozeng Tang ◽  
...  

Based on laboratory experiments, the paper researches the effect of polyvinyl alcohol (PVA) content on the performance of fly ash-based cement grouting materials. The test results show that the addition of PVA has limited effect on the initial and final setting time and brings a certain but minor delay on the appearance of the hydration peak period. It enhances cement hydration during the hydration slow down period. The impermeability of PVA to the grouting material is obviously improved, and it increases with the growing amount of PVA content. PVA improves the flexural strength and compressive strength of the sample block to varying degrees, and the improvement on flexural strength is more obvious than that on the compressive strength. It has a significant effect on the mechanical properties of the grouting material and can effectively improve the rock mass’s hydraulic coupling characteristics. It also has great application value and practical significance for the prevention and control of water hazards in deep coal stopes.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 662
Author(s):  
Yonghua Wu ◽  
Qiqi Li ◽  
Guoxin Li ◽  
Shiying Tang ◽  
Mengdie Niu ◽  
...  

In order to study what the effect of superplasticizers on the setting time, fluidity and compressive strength of calcium sulfoaluminate cement (CSA) a naphthalene-based superplasticizer (BNS) and a polycarboxylic acid superplasticizer (PC) were selected to interact with CSA pastes and ye’elimite, respectively. X-ray diffraction (XRD), thermogravimetric (TG) analysis and scanning electron microscopy (SEM) analytical methods were used to investigate the class, amount and microstructure of the CSA pastes and ye’elimite pastes hydration products under the effect of the superplasticizers. The results showed that the addition of BNS can promote ettringite generation and thus improve the early compressive strength. As the addition of BNS increased from 0.8 wt% to 2.0 wt%, the initial setting time was prolonged 10 min, the final setting time was prolonged 7 min, the 5 min fluidity was improved from no fluidity to 220 mm. However, as the addition of PC increased from 0.08 wt% to 0.20 wt%, the setting time of the PC just changed within 3 min; the 5 min fluidity increased from 110 mm to 195 mm and no 15 min fluidity at all was observed. AS seen by SEM, it can be stated that generated ettringite under the addition of PC was layered and lacking bonding, and its morphology changed from rod-like to flake-like, leading to a decrease in early compressive strength.


2013 ◽  
Vol 477-478 ◽  
pp. 931-935
Author(s):  
Chang Zheng Sun ◽  
Xiao Ping Zhang ◽  
Hai Nan Zhao ◽  
Qiang Gao

To explore retarders on performance of ultra-early strength grouting material, Retarder, which are commonly used in the market after a preliminary screening, are further tested and analyzed for initial fluidity, setting time and mechanical strength properties of super early strength grouting material. The results show that: When borax content is 0.4%, the initial fluidity, final setting time, workability, mechanical strength are the best.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6751
Author(s):  
Konrad A. Sodol ◽  
Łukasz Kaczmarek ◽  
Jacek Szer ◽  
Sebastian Miszczak ◽  
Mariusz Stegliński

This article is motivated by civil fire safety. Fire-prevention engineering demands a wide range of information about building materials including alternative cements, for instance CSA-cement. Because of exposure of the cement-base material to a high temperature, its strength properties deteriorate due to dehydration connected with phase and microstructure changes. Previous research indicated that the main endothermic reaction of CSA-based composite, dehydration of ettringite, might be used as a cooling system for a metal structure during fire-load. This article examines visual assessment, microstructure, density, as well as flexural and compressive strength parameters of CSA-based composite after isothermal heating at temperatures from 23 °C to 800 °C. The results of SEM/EDS investigations showed that the calcium sulfoaluminate paste may start partially re-sintering above 600 °C. Mechanical tests revealed significant reduction of strength parameters but residual compressive strength was maintained in the whole temperature range e.g., 8 MPa at 800 °C. Additionally, visual assessment of the specimens indicated that it might be possible to predict the material temperature heating based on the specific surface color. These findings add to the evidence of general knowledge about CSA hydrates.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhilin Dun ◽  
Mengqi Wang ◽  
Lianwei Ren ◽  
Zhiyuan Dun

Waste concrete powder (WCP) is proposed to replace part of the cement to seek environmentally friendly grouting materials for ground improvement in mine goaf. The optimal mixing proportion was selected based on the performance indexes of the water-separation ratio, stone rate, viscosity, setting time, and compressive strength. X-ray diffraction (XRD) and scanning electron microscopy (SEM) tests were also conducted to analyze mineralogical phases and investigate the microscopic mechanism. Test results show that the slurry prepared by the substitution rate of 70% and adding 0.05% water-reducing agent meets well the requirements of ground grouting in mine goaf. The WCP produced by grinding mainly exerts microaggregate effect in the slurry due to low activity. A lot of pores on the surface of WCP were shown by SEM which can absorb the water in the slurry and increase the stone rate. The WCP application for ground grouting in mine goaf can not only recycle WC but also provide new grouting materials for goaf ground.


Author(s):  
Olusola Emmanuel Babalola ◽  
Paul O. Awoyera

Supplementary cementitious materials are most needed to enhance a sustainable development in poor communities. It is pertinent to investigate the suitability of such alternative materials for construction. The present study evaluates the strength characteristics of concrete made with varied proportion of Cordia millenii ash blended with Portland cement. Chemical composition of Cordia millenii and the setting time when blended with cement was determined. Other laboratory tests performed on Cordia millenii blended cement include: sieve analysis and specific gravity. Five replacement percentages of Cordia millenii (5%, 10%, 15%, and 20%) were blended with cement in concrete. Control specimens were also produced with only cement. Tests to determine the workability, air entrained, bulk density and compressive strength properties of the concrete were also conducted. Results obtained revealed that optimum Cordia millenii mix is 10%, which yielded the highest density and compressive strength in the concrete.


2013 ◽  
Vol 477-478 ◽  
pp. 990-995
Author(s):  
Xiao Ping Zhang ◽  
Chang Zheng Sun ◽  
Tong Feng Zhao

Super early strength high performance grouting material was produced using high alumina cement, ordinary portland cement, gypsum and silica fume. The different glue sand ratio and the cement sand ratio 1.0 mix microstructure were studied systematically. The results showed that the system with a variety of admixture using hingh mortar ratio can be prepared for the initial flow ratio greater than 325{mm},, 30min flow greater than 280{mm}, 2h compressive strength 34.80{MPa}, 24h bending over 13.82{MPa}, 28d compressive strength greater than 99.90{MPa}, 28d compressive strength greater than 56d compressive strength. The system of early SEM microstructures showed good crystal growth, structure compact.


2017 ◽  
Vol 898 ◽  
pp. 1990-1995 ◽  
Author(s):  
Ming Zhang Lan ◽  
Bin Feng Xiang ◽  
Jian Feng Wang ◽  
Xu Dong Zhao ◽  
Xiao Ying Wang

In order to investigate the early hydration behavior of rapid setting and hardening belite sulfoaluminate cements, the methods of X-ray Diffraction, Scanning Electron Microscope, Compressive Strength test and Setting Times test were used to identify and quantify the hydration kinetics and microstructure of this new-found cements in China. The results showed that the main mineral compositions of high belite sulfoaluminate cement clinker included calcium sulfoaluminate (4CaO·3Al2O3·CaSO4), belite (2CaO·SiO2), ferrite phase, free gypsum and free lime. It was found that not only the setting time and compressive strength but also the composition of hydration products were influenced by anhydrite to some extent. Meanwhile, a mass of AFt and AFm generated along with the hydration process at different ages, overlapped, crossed and penetrated through calcium silicate hydrate gel and aluminum oxide to form a relatively dense structure which could contribute to the high strength of cement.


Author(s):  
S. Nagajothi ◽  
S. Elavenil

AbstractGeopolymer concrete is a booming technology in the construction industry. Much research is occurring in geopolymer concrete, as it emits low carbon dioxide into the atmosphere, is eco-friendly material and is an alternative for cement. This research mainly focuses on the use of fly ash based geopolymer concrete in ambient curing conditions and the use of manufactured sand due to the scarcity of natural sand. Mainly studies have evolved on the workability, setting time and compressive strength by the effect of ground granulated blast furnace slag (GGBFS), manufactured sand (M-sand), alkaline activator solutions to binder ratio and the proportions of sodium silicate to sodium hydroxide (SS/SH) in geopolymer concrete and mortar. The experimental studies were carried out using nine geopolymer concrete mixes and the comparisons were made. The workability of concrete decreases by increasing the percentage of GGBFS, M-sand and the proportions of SS/SH whereas workability of concrete increases when increasing the alkaline liquid to binder ratio. The compressive strength of geopolymer mortar and concrete increases when the percentage of GGBFS and M-sand is increased, and it decreases by increasing the alkaline liquid content. There is no change in strength by decreasing the proportions of SS/SH.


Author(s):  
Mohammad Hossein Esnaashary ◽  
Hamid Reza Rezaie ◽  
Alireza Khavandi ◽  
Jafar Javadpour

Taking the advantage of a novel magnesium phosphate precursor containing Na and Ca, the cementation rate of the cement, including only Mg/Mg–Na–Ca, was studied. Besides, two effective parameters, that is, calcination temperature, 650 °C and 800 °C, and powder-to-cement liquid ratio, 1 and 1.5 g/mL, were assessed. X-ray diffraction, scanning electron microscopy, ion chromatography, particle size analyser, Vicat needle and compression test were used to characterize the powders and obtained cements. The sample containing Mg–Na–Ca, calcined at 800 °C with powder-to-cement liquid ratio of 1.5, obtained the highest compressive strength, 20 MPa, but set fast. To control the kinetics of cementation, the powder containing Mg–Na–Ca calcined at 950 °C with powder-to-cement liquid ratio of 1.5 and 2 g/mL was assessed and the one with 2 g/mL set in 9 min possessing 22 MPa compressive strength was selected as optimal condition to be used as a candidate, injectable bone cement.


Sign in / Sign up

Export Citation Format

Share Document