scholarly journals Thermal and Mechanical Interfacial Behaviors of Graphene Oxide-Reinforced Epoxy Composites Cured by Thermal Latent Catalyst

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1354 ◽  
Author(s):  
Shahina Riaz ◽  
Soo-Jin Park

A series of composites was prepared from a diglycidyl ether of bisphenol A (DGEBA) with different graphene filler contents to improve their mechanical performance and thermal stability. Graphene oxide (GO) and GO modified with hexamethylene tetraamine (HMTA) were selected as reinforcing agents. As a latent cationic initiator and curing agent, N-benzylepyrizinium hexafluoroantimonate (N-BPH) was used. The effect of fillers and their contents on the mechanical properties and thermal stability of the composites were studied. Fracture toughness improved by 23% and 40%, and fracture energy was enhanced by 1.94- and 2.27-fold, for the composites containing 0.04 wt.% GO and HMTA-GO, respectively. The gradual increase in fracture toughness at higher filler contents was attributed to both crack deflection and pinning mechanisms. Maximum thermal stability in the composites was achieved by using up to 0.1 wt.% graphene fillers.

2015 ◽  
Vol 744-746 ◽  
pp. 1374-1377
Author(s):  
Xi Wang

A nonlinear multifunctional polyamine N,N,N’,N’-tetra (3-aminopropyl)-1,6-diamino-hexane (TADH), was prepared and employed as a novel hardener for diglycidyl ether of bisphenol A (DGEBA). Nonisothermal reactions of DGEBA/TADH were systematically investigated with differential scanning calorimetry (DSC). In addition, analysis of thermal stability of the cured DGEBA/TADH with thermogravimetric analysis (TGA) revealed that it possessed quite good thermal stability and increased residual char content at 600◦C in nitrogen. Furthermore, dynamic mechanical analysis (DMA) of the DGEBA/TADH network showed its relaxations were characterized by localized motions of hydroxyl ether segments and cooperative motions of whole network chains (glass relaxation) at different temperature regions.


Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 178 ◽  
Author(s):  
Guijun Yang ◽  
Young-Jung Heo ◽  
Soo-Jin Park

In this study, the modification of an epoxy matrix with different amounts of cube-like and rod-like CaCO3 nanoparticles was investigated. The effects of variations in the morphology of CaCO3 on the mechanical properties and thermal stability of the CaCO3/epoxy composites were studied. The rod-like CaCO3/epoxy composites (EP-rod) showed a higher degradation temperature (4.5 °C) than neat epoxy. The results showed that the mechanical properties, such as the flexural strength, flexural modulus, and fracture toughness of the epoxy composites with CaCO3 were enhanced by the addition of cube-like and rod-like CaCO3 nanoparticles. Moreover, the mechanical properties of the composites were enhanced by increasing the amount of CaCO3 added but decreased when the filler content reached 2%. The fracture toughness Kic and fracture energy release rate Gic of cube-like and rod-like CaCO3/epoxy composites (0.85/0.74 MPa m1/2 and 318.7/229.5 J m−2, respectively) is higher than the neat epoxy (0.52 MPa m1/2 and 120.48 J m−2).


2021 ◽  
Author(s):  
Joong Tark Han ◽  
Joon Young Cho ◽  
Jeong Hoon Kim

The thermal stability of solution-exfoliated graphene oxide (GO) in air is one of the most important physical properties influencing its potential applications. To date, majority of the GO prepared by...


2021 ◽  
pp. 002199832199945
Author(s):  
Jong H Eun ◽  
Bo K Choi ◽  
Sun M Sung ◽  
Min S Kim ◽  
Joon S Lee

In this study, carbon/epoxy composites were manufactured by coating with a polyamide at different weight percentages (5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.%) to improve their impact resistance and fracture toughness. The chemical reaction between the polyamide and epoxy resin were examined by fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy. The mechanical properties and fracture toughness of the carbon/epoxy composites were analyzed. The mechanical properties of the carbon/epoxy composites, such as transverse flexural tests, longitudinal flexural tests, and impact tests, were investigated. After the impact tests, an ultrasonic C-scan was performed to reveal the internal damage area. The interlaminar fracture toughness of the carbon/epoxy composites was measured using a mode I test. The critical energy release rates were increased by 77% compared to the virgin carbon/epoxy composites. The surface morphology of the fractured surface was observed. The toughening mechanism of the carbon/epoxy composites was suggested based on the confirmed experimental data.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Aleksandra Kozłowska ◽  
Adam Grajcar ◽  
Aleksandra Janik ◽  
Krzysztof Radwański ◽  
Ulrich Krupp ◽  
...  

AbstractAdvanced medium-Mn sheet steels show an opportunity for the development of cost-effective and light-weight automotive parts with improved safety and optimized environmental performance. These steels utilize the strain-induced martensitic transformation of metastable retained austenite to improve the strength–ductility balance. The improvement of mechanical performance is related to the tailored thermal and mechanical stabilities of retained austenite. The mechanical stability of retained austenite was estimated in static tensile tests over a wide temperature range from 20 °C to 200 °C. The thermal stability of retained austenite during heating at elevated temperatures was assessed by means of dilatometry. The phase composition and microstructure evolution were investigated by means of scanning electron microscopy, electron backscatter diffraction, X-ray diffraction and transmission electron microscopy techniques. It was shown that the retained austenite stability shows a pronounced temperature dependence and is also stimulated by the manganese addition in a 3–5% range.


2018 ◽  
Vol 33 (1) ◽  
pp. 85-96
Author(s):  
Thangamani Rajkumar ◽  
Nagamuthu Muthupandiyan ◽  
Chinnaswamy Thangavel Vijayakumar

Reduced graphene oxide (RGEO) and N-[4-(chlorocarbonyl)phenyl]maleimide-functionalized reduced graphene oxide (MFRGEO) were used as nanofillers for polymethyl methacrylate (PMMA) matrix nanocomposites to enhance thermal stability. Methyl methacrylate containing nanofiller of four different weight percent (0.2, 0.4, 0.6, and 0.8) was polymerized using ultrasonic radiation-assisted bulk polymerization. The Fourier-transform infrared spectra showed the absence of chemical interaction between the filler and the matrix phase. Morphology of nanocomposites studied using scanning electron microscope confirmed the assistance aided by ultrasonication in the uniform dispersion of nanofiller in the PMMA matrix. Thermogravimetric (TG) study revealed the presence of MFRGEO enhanced the thermal stability of PMMA by shifting the entire degradation to higher temperature. The thermal stability of PMMA nanocomposite was improved by as much as 40°C at just 0.8 wt% loading of MFRGEO. Differential TG study also supported the role of maleimide functionalization on RGEO in the enhancement of thermal stability of PMMA by means of retarding the degradation rate of unsaturated chain ends in the PMMA matrix. Unlike MFRGEO, RGEO failed to enhance the thermal stability of PMMA.


Sign in / Sign up

Export Citation Format

Share Document