scholarly journals Laboratory Compaction Study and Mechanical Performance Assessment of Half-Warm Mix Recycled Asphalt Mixtures Containing 100% RAP

Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1992 ◽  
Author(s):  
José Marcobal ◽  
José Lizárraga ◽  
Juan Gallego

The use of low-carbon and energy-efficient paving technologies is gaining worldwide acceptance in recent years as a means to encourage commitment towards more sustainable pavement management practices. However, there still remain some technical gaps regarding mix design procedures for the half-warm mix asphalt (HWMA) mixtures’ preparation and characterization in the laboratory. To this end, three different laboratory compaction methods (e.g., static load, Marshall impactor, and gyratory compactor) were selected and put into assessment to define the most suitable compaction test method for half-warm mix recycled asphalt (HWMRA) mixtures with 100% reclaimed asphalt pavement (RAP). Posteriorly, the effect of four-accelerated curing treatments (0, 24, 48, and 72 h) on the mixtures’ mechanical performance was investigated. Then, advanced mechanical characterization of the mixture performance was conducted to quantify the indirect tensile strength (ITS), stiffness modulus, rutting, and four-point bending (4PB) fatigue test. Thus, based on the authors’ findings, the HWMRA mixtures with 100% RAP and emulsified bitumen exhibited proper volumetric (e.g., air voids and density) and mechanical behavior in terms of moisture damage, ITS, stiffness modulus, rutting, and fatigue cracking. These findings encourage greater confidence in promoting the use of these sustainable asphalt mixes for their use in road pavements or urban streets.

2017 ◽  
Vol 7 (080) ◽  
pp. 129 ◽  
Author(s):  
J. M. Lizárraga ◽  
A. Jiménez del Barco-Carrión ◽  
A. Ramírez ◽  
P. Díaz ◽  
F. Moreno-Navarro ◽  
...  

The use of Half Warm Mixes with high Reclaimed Asphalt content (HWMRA) has the potential to generate significant environmental advantages such as the reduction in consumption of natural resources and the emission of gases into the atmosphere. This paper therefore focuses on demonstrating the viability of using these types of mixes in wearing courses. For this purpose, an HWMRA with 70 % and 100 % Reclaimed Asphalt Pavement (RAP) and emulsion were designed in the laboratory. The performance of the mixes was then assessed and compared with that of conventional Hot Mix Asphalt. In a second stage, the mixes were manufactured in-plant, and laid and compacted in an Accelerated Pavement Test track. The cores were then extracted and tested for stiffness modulus and resistance to fatigue. The results from the tests conducted with both the laboratory specimens and the cores showed that the performance of HWMRA is comparable to that of HMA. These findings encourage greater confidence in promoting the use of these types of sustainable asphalt mixes.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Jan Mikolaj ◽  
Frantisek Schlosser ◽  
Lubos Remek ◽  
Martin Pitoňák ◽  
Juraj Šrámek

The article summarises findings from laboratory testing of asphalt mixtures using reclaimed asphalt containing polymer-modified binder and subsequent technicoeconomical considerations of their use in pavement management system. Tested mixtures had 0%, 15%, and 40% content of reclaimed asphalt (RA) containing polymer-modified bitumen (PMB) obtained by milling from surfacing layers of existing PA, AC11, and SMA11 pavement layers. A complete description of these mixtures is given, and testing methods used are described. The mixtures were tested for air void content, ITSR water sensitivity test, plastic deformation wheel tracking test, stiffness of the tested mixtures, and two-point bending test to ascertain fatigue. Concise and succinct conclusions from laboratory testing are derived and used as an input in the second part of the article. It is found that the addition of RA containing PMB increased stiffness modulus of the final mixture, which increases resistance to plastic deformation and leads to higher brittleness at low temperatures. It is found that virgin PMB also increases fatigue resistance as opposed to PMB content from reclaimed materials. In the second part of the article, findings from laboratory testing are addressed in the context of their practical use in pavement management. The key element identified, having a direct impact on pavement performance models, was the stiffness modulus for mixtures with different PMB-reclaimed asphalt contents. A method is described to evaluate pavement construction properties related to wearing course materials via the pavement performance model. Practical use of this method is described and applied in a case study. In this case study, the proposed method is used to evaluate the issues regarding practical use of asphalt mixtures with different ratios of reclaimed asphalt containing PMB and economic implications of their use. It is found that pavement performance of surfacing mixtures with reclaimed asphalt containing PMB is significantly better for plastic deformation at the cost of earlier initiation and progression of surface distress due to cracking and potholing. This paper suggests that due to cracking and potholing, periodic maintenance costs increase for pavements with reclaimed asphalt material containing PMB; however, they are outweighed by lower procurement cost and longer life expectancy due to slower plastic deformation of the pavement.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Mojtaba Mohammadafzali ◽  
Hesham Ali ◽  
James A. Musselman ◽  
Gregory A. Sholar ◽  
Aidin Massahi

Fatigue cracking is an important concern when a high percentage of Reclaimed Asphalt Pavement (RAP) is used in an asphalt mixture. The aging of the asphalt binder reduces its ductility and makes the pavement more susceptible to cracking. Rejuvenators are often added to high-RAP mixtures to enhance their performance. The aging of a rejuvenated binder is different from virgin asphalt. Therefore, the effect of aging on a recycled asphalt mixture can be different from its effect on a new one. This study evaluated the cracking resistance of 100% recycled asphalt binders and mixtures and investigated the effect of aging on this performance parameter. The cracking resistance of the binder samples was tested by a Bending Beam Rheometer. An accelerated pavement weathering system was used to age the asphalt mixtures and their cracking resistance was evaluated by the Texas Overlay Test. The results from binder and mixture tests mutually indicated that rejuvenated asphalt has a significantly better cracking resistance than virgin asphalt. Rejuvenated mixtures generally aged more rapidly, and the rate of aging was different for different rejuvenators.


2017 ◽  
Vol 7 (080) ◽  
pp. 127 ◽  
Author(s):  
H. I. Lacalle-Jiménez ◽  
J. P. Edwards ◽  
N. H. Thom

Cold recycled bound materials (CRBMs) provide an economic and environmental advantage for pavements since they decrease energy and raw material consumption. However, design methods for airfield pavements do not include key CRBM properties. In this paper an empirical-mechanistic method is used to study airfield pavement design with CRBM in order to develop design guidance. The aim of the paper is to obtain the inputs related to material properties needed for use in this method. For this purpose, CRBM containing reclaimed asphalt, with fly ash, cement and foamed bitumen as stabilising agents, was characterised. The methodology included indirect tensile stiffness modulus (ITSM) and indirect tensile fatigue tests (ITFT) in strain control mode. The inputs needed for a pavement design analysis with CRBM were then obtained. The results showed the importance of further study on CRBM fatigue to understand the behaviour of these mixes under cyclic loading.


Author(s):  
David H. Timm ◽  
Brian K. Diefenderfer ◽  
Benjamin F. Bowers ◽  
Gerardo Flintsch

Long-life flexible pavements are well documented and used widely across the U.S. Found in every climate zone and traffic classification, long-life pavements do not experience deep structural distresses such as bottom-up fatigue cracking or substructure rutting. Full-scale test sections, built in 2003 at the National Center for Asphalt Technology (NCAT) Test Track, provided the basis for an optimized design approach that utilizes strain distributions for long-life thickness design. These sections, containing only virgin materials, were subjected to 30 million standard axle loadings with excellent performance in terms of rutting, cracking, and roughness. In 2012, three new sections were built at the Test Track using cold central plant recycled asphalt materials as the base layer. These layers, made from nearly 100% reclaimed asphalt pavement (RAP), supported hot mix asphalt layers that also included RAP with one section featuring in-place stabilization of the existing aggregate base. This paper provides a direct comparison between the sets of sections to compare and contrast their performance histories and structural characterization, and consider their economic and environmental impacts. None of the recycled sections are exhibiting any surface deterioration, despite heavy trafficking, and the section with a stabilized base is exhibiting lower strains than established long-life pavement thresholds. The economic analysis suggested that the recycled sections can deliver similar performance at a lower average structure normalized section cost than the non-recycled sections. Furthermore, the section with the stabilized base and 76% recycled material is likely a long-life pavement and can potentially outperform the sections with no recycled content.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4137
Author(s):  
Quan Liu ◽  
Markus Oeser

The homogeneity of asphalt mixtures blended with reclaimed asphalt pavement (RAP) is affected by many factors. Due to the complicated compositions of recycled asphalt mixtures, the inhomogeneity issue might cause insufficient mechanical properties of asphalt mixtures, even though a design method was appropriately adopted. Therefore, it is of great significance to study the influence of mixing conditions on the homogeneity of asphalt mixtures blended with RAP materials. This study focused on the macro-scale homogeneity of produced asphalt mixtures. Specifically, asphalt mixtures incorporated with 40% RAP content were produced in a laboratory using different mixing times and mixing temperatures. A multi-direction indirect tensile stiffness modulus (ITSM) test was proposed to quantify the homogeneity of produced samples. In addition, the digital image processing (DIP) method was used to identify the distribution of aggregates and RAP binder. The results indicated that the influence of mixing time on the macro-homogeneity of asphalt mixtures indicated that a longer mixing time was favorable for the material dispersion. The influence of mixing temperature mainly rested on two perspectives. One was that the temperature variation induced the change of binder viscosity. The other was that the temperature influences the diffusion process between RAP binder and new bitumen, which further affected the mechanical performance of produced asphalt mixtures.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4052
Author(s):  
Giulia Tarsi ◽  
Piergiorgio Tataranni ◽  
Cesare Sangiorgi

Reclaimed Asphalt Pavement (RAP) material mainly consists of removed asphalt concretes from existing infrastructures and, to a minor extent, of wasted or rejected mixes during the production processes. Being composed of two valuable non-renewable resources, i.e., aggregates and bituminous binder, its conscious use can ensure the sustainability of asphalt pavement construction. Thanks to the use of RAP material in new asphalt products, the USA saved 4.1 million tons of virgin binder and 78 million tons of virgin aggregates in 2018. Therefore, the use of RAP for the production of new asphalt formulations at the top of the recycling hierarchy is preferable instead of being down-cycled in low-value applications. The RAP material represents one of the most re-used construction products worldwide; in 2018, approximately 88% wt. and 72% wt. of RAP were used in USA and Europe, respectively, as aggregates for Hot, Warm and Cold Asphalt Mixtures and for unbound layers. Several studies have revealed positive responses of the recycled asphalt mixtures with high or very high content of RAP. However, the common practices of many countries still limit the RAP content to a 15–20% wt., on average, in the recycled asphalt mixes. The amount of RAP in asphalt concretes can be significantly increased by applying good management practices of the RAP, either processed or not, as well as novel production technologies and advanced mix design approaches. This manuscript aims to summarize the state-of-the-art of use of RAP aggregates in new asphalt mixtures. The economic and environmental benefits are also discussed.


2021 ◽  
Vol 11 (6) ◽  
pp. 2458
Author(s):  
Ronald Roberts ◽  
Laura Inzerillo ◽  
Gaetano Di Mino

Road networks are critical infrastructures within any region and it is imperative to maintain their conditions for safe and effective movement of goods and services. Road Management, therefore, plays a key role to ensure consistent efficient operation. However, significant resources are required to perform necessary maintenance activities to achieve and maintain high levels of service. Pavement maintenance can typically be very expensive and decisions are needed concerning planning and prioritizing interventions. Data are key towards enabling adequate maintenance planning but in many instances, there is limited available information especially in small or under-resourced urban road authorities. This study develops a roadmap to help these authorities by using flexible data analysis and deep learning computational systems to highlight important factors within road networks, which are used to construct models that can help predict future intervention timelines. A case study in Palermo, Italy was successfully developed to demonstrate how the techniques could be applied to perform appropriate feature selection and prediction models based on limited data sources. The workflow provides a pathway towards more effective pavement maintenance management practices using techniques that can be readily adapted based on different environments. This takes another step towards automating these practices within the pavement management system.


Sign in / Sign up

Export Citation Format

Share Document