scholarly journals Part I: The Analytical Model Predicting Post-Yield Behavior of Concrete-Encased Steel Beams Considering Various Confinement Effects by Transverse Reinforcements and Steels

Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2302
Author(s):  
Nguyen ◽  
Hong

The purpose of the work was to propose analytical model considering double confinements (provided by both transverse reinforcements and a wide flange steel section), which was verified by the nonlinear finite element analysis considering concrete-damaged plasticity. The scope of the effort and the procedures to achieve the aim of this study included the identification of the concrete confinements provided by both transverse reinforcements and a wide flange steel section based on the elasto-plastic model in tension for both rebar/steel sections and elasto-buckling for rebars in compression. The influence of rebar buckling in the compression zone on flexural moment strength was also investigated with and without considering confining effects offered by steel sections. The analytical approach predicted a post-yield behavior of composite beams based on the confining effect offered by both the shear reinforcement and wide steel flange sections. However, for beams without axial loads, the compressive zones with high and partial confinements for concrete sections at the yield and maximum load limit state were limited when compressive buckling failure was not considered, preventing the confining factors from significantly influencing the flexural load resisting capacity. An accurate flexural capacity of composite beams can be obtained when rebar was modeled with buckling in the compression zone.

Author(s):  
Eleftherios Aggelopoulos ◽  
Francois Hanus ◽  
Mark Lawson

Beams with regular circular web openings (cellular beams) are often used in composite construction. Rules for the minimum degree of shear connection in composite beams are presented in Eurocode 4 but were derived for solid web beams in propped construction. This paper investigates the degree of shear connection requirements for composite cellular beams, focusing on the combined effect of using a steel section with regularly spaced, large circular web openings and unpropped construction conditions. The effect of the diameter and the spacing of the openings is also investigated. In order to provide rules for the minimum degree of shear connection in cellular beams, parametric finite element (FE) analyses were carried out for beams in the span range of 9 to 18 m. The results were calibrated against a 15.3 m span composite cellular beam test with a low degree of shear connection. The proposed minimum degree of shear connection requirements for beams with regular circular web openings are presented for both propped and unpropped construction, and for symmetric and asymmetric steel sections. Comparisons are made with equivalent beams with solid webs (no openings) and it is shown that significant relaxation in the codified minimum degree of shear connection to the current version of Eurocode 4 can be justified for composite cellular beams.  


2011 ◽  
Vol 94-96 ◽  
pp. 1539-1544 ◽  
Author(s):  
Fatimah De’nan ◽  
Nor Salwani Hashim

A triangular web profile (TRIWP) steel section is a built-up section made up of two flanges connected to a web plate of triangular profile. This paper describes the study on the bending performance in major (Ix) and minor (Iy) axes of Triangular Web Profile (TRIWP) compared to flat web (FW) steel sections. A number of finite element models were developed using finite element software LUSAS version 14.3. Thin shell element which is a family of shell element in 3D dimension was chosen to represent the element type of the model. Two sizes of FW as control specimens and two sizes of TRIWP steel section which is 200×100×6×3 mm and 180×75×5×2 mm were used. Each of steel section was modeled using several spans such as 3m, 4m and 4.8m. The finite element results show that the deflections in major axes for TRIWP more than FW steel section. It was noted that, the value of Ix for the TRIWP is 0.754 to 1.523 times the Ix of FW steel section. On the other hand, the deflections in minor axes for TRIWP lower than FW steel section. The value of Iy for the TRIWP is 1.818 to 1.686 times the Iy of FW steel section. It can be concluded that the TRIWP is stiffer compared to FW steel section in minor axes and TRIWP has a higher resistance to bending in minor axes than FW steel section.


2005 ◽  
Vol 8 (3) ◽  
pp. 309-324 ◽  
Author(s):  
H. X. Yu ◽  
J. Y. Richard Liew

When a building compartment is subjected to fire attack, there are complex interactions between the fire affected members with the surrounding members. The behaviour of the steel frame members in fire can be drastically different from that of its member in isolation. This paper studies the behaviour of steel beams with the increase of temperature from beam action phase to catenary action phase and until failure. The load bearing mechanism in the catenary action phase is discussed and the failure criterion is defined. A new ultimate limit state based on 15% maximum strain of steel material at elevated temperature is proposed to determine the ultimate load capacity of beams failed in the catenary action phase. Wide ranges of beam parameters including various beam sizes and span lengths with different degrees of end restraints are studied. Comparison of results with those obtained from nonlinear finite element analysis shows that the proposed design method could enhance the critical temperature of steel beams by over 200 °C if proper attention is given to the integrity of connections to resist the catenary force. In this respect, methods to estimate the catenary force and beam deflection are provided.


2019 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Yun-Chul Choi ◽  
Doo-Sung Choi ◽  
Keum-Sung Park ◽  
Kang-Seok Lee

Efficient parking structures are urgently required in Korea. The design of parking structures more than 8 m in height is difficult because both fire and seismic resistance must be considered. Existing designs are uneconomical and conservative. However, the design of parking structures less than 8 m in height is relatively simple and there are few restrictions to the construction. It is essential to optimize the design of parking structures less than 8 m in height. Here, we describe novel wide long-span composite beams that reduce the story height of low parking structures. The flexural capacity of seven of the beams was evaluated; all beams were loaded at two points prior to monotonic bending tests. We also performed finite element analysis (FEA) based on the material properties of the test specimens, and compared the results to those of the structural tests. The flexural strength of the wide composite steel beams increased by approximately 20% as the steel thickness rose by 3 mm, from 6 to 9 mm. The rebar shape (triangular or rectangular) did not affect flexural strength. The flexural strength of beams without rebar was 10% less than that of beams with rebar. The FEA and test results were in good agreement. The section plastic moments were free from global and local instability.


1993 ◽  
Vol 20 (5) ◽  
pp. 828-833 ◽  
Author(s):  
A. Picard ◽  
D. Beaulieu

According to standards CAN/CSA-S6-88 and OHBDC (1983), a fully plastic stress distribution or a linear stress distribution at first yielding of the steel section should be used to determine the factored bending resistance of a composite section made of a non-compact steel section, depending upon the depth of the compression portion of the web. In this paper, an elastoplastic analysis is presented and is illustrated by an example. Comments on some clauses from the S6 Standard are also presented. Key words: bridges, composite beams, elastoplastic analysis.


2013 ◽  
Vol 351-352 ◽  
pp. 427-433 ◽  
Author(s):  
S.O. Bamaga ◽  
M.Md. Tahir

Introducing low cost housing is one of the challenges face civil engineers now-days. Using lightweight construction materials i.e. cold formed steel sections is an alternate solution to overcome the challenge. In this study, a lightweight composite beam was introduced. It consists of cold formed steel section and profiled concrete slab. Experimental push tests were conducted to investigate the ductility and strength capacities of new and innovative shear connectors. The shear connectors were easy to form and give advantages to speed up the fabrication process of the proposed composite beam. The shear connectors showed large deformation and strength capacities. It is concluded that the proposed shear connectors could be used for lightweight composite beams.


2020 ◽  
pp. 136943322098170
Author(s):  
Michele Fabio Granata ◽  
Antonino Recupero

In concrete box girders, the amount and distribution of reinforcements in the webs have to be estimated considering the local effects due to eccentric external loads and cross-sectional distortion and not only the global effect due to the resultant forces of a longitudinal analysis: shear, torsion and bending. This work presents an analytical model that allows designers to take into account the interaction of all these effects, global and local, for the determination of the reinforcements. The model is based on the theory of stress fields and it has been compared to a 3D finite element analysis, in order to validate the interaction domains. The results show how the proposed analytical model allows an easy and reliable reinforcement evaluation, in agreement with a more refined 3D analysis but with a reduced computational burden.


1989 ◽  
Vol 16 (2) ◽  
pp. 124-139 ◽  
Author(s):  
Robert G. Driver ◽  
D. J. Laurie Kennedy

Design standards provide little information for the design of I-shaped steel beams not loaded through the shear centre and therefore subjected to combined flexure and torsion. In particular, methods for determining the ultimate capacity, as is required in limit states design standards, are not presented. The literature on elastic analysis is extensive, but only limited experimental and analytical work has been conducted in the inelastic region. No comprehensive design procedures, applicable to limit states design standards, have been developed.From four tests conducted on cantilever beams, with varying moment–torque ratios, it is established that the torsional behaviour has two distinct phases, with the second dominated by second-order geometric effects. This second phase is nonutilizable because the added torsional restraint developed is path dependent and, if deflections had been restricted, would not have been significant. Based on the first-phase behaviour, a normal and shearing stress distribution on the cross section is proposed. From this, a moment–torque ultimate strength interaction diagram is developed, applicable to a number of different end and loading conditions. This ultimate limit state interaction diagram and serviceability limit states, based on first yield and on distortion limitations, provide a comprehensive design approach for these members. Key words: beams, bending moment, flexure, inelastic, interaction diagram, I-shaped, limit states, serviceability, steel, torsion, torque, ultimate.


Author(s):  
V. Ramirez-Elias ◽  
E. Ledesma-Orozco ◽  
H. Hernandez-Moreno

This paper shows the finite element simulation of a representative specimen from the firewall section in the AEROMARMI ESTELA M1 aircraft. This specimen is manufactured in glass and carbon / epoxy laminates. The specimen is subjected to a load which direction and magnitude are determined by a previous dynamic loads study [10], taking into account the maximum load factor allowed by the FAA (Federal Aviation Administration) for utilitarian aircrafts [11]. A representative specimen is manufactured with the same features of the firewall. Meanwhile a fix is built in order to introduce the load directions on the representative specimen. The relationship between load and displacement is plotted for this representative specimen, whence the maximum displacement at the specific load is obtained, afterwards it is compared with the finite element model, which is modified in its laminate thicknesses in order to decrease the deviation error; subsequently this features could be applied to perform the whole firewall analysis in a future model [10].


2013 ◽  
Vol 321-324 ◽  
pp. 1794-1798
Author(s):  
Li Kun Guan ◽  
Wei Dong Liu ◽  
Ning Ning Wang

In this paper,in view of the fork head often broken of the main drive system of a medium thickness plate mill,finite element analysis software ANSYS is used to establish universal coupling model and analyse static strength of the universal coupling, woning maximum stress value of the fork head and cross shaft at maximum load and analysing fracture reason of the fork,which could provide a theoretical basis for the cross shaft universal coupling strength analysis and structural optimization design.


Sign in / Sign up

Export Citation Format

Share Document