scholarly journals Thermal Deformation of PA66/Carbon Powder Composite Made with Fused Deposition Modeling

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 519 ◽  
Author(s):  
Fei Li ◽  
Jingyu Sun ◽  
Hualong Xie ◽  
Kun Yang ◽  
Xiaofei Zhao

Polyamide 66 (PA66) is a material with high wear resistance, toughness, and heat resistance. However, low stiffness and thermal deformation during thermal processes define applications in many conditions. Carbon powder efficiently enhances stiffness and reduces thermal deformation, which makes up defects of plastic materials. However, forming a composite with fused deposition modeling (FDM) that accumulates material to a specified location by melting plastic filaments is limited, including fluidity and viscosity to form normally. In this paper, filaments of polyamide 66 (PA66) reinforced with carbon powder were produced. Digimat was used to analyze the composite material properties of different carbon contents and predict the proper carbon content. Then, the material properties were imported to ANSYS software to simulate the thermal deformation of the workpieces during processing. It was verified that adding carbon powder is helpful in decreasing thermal deformation. Comparing experiments and simulations, we found that 20% carbon mass fraction was best, and that thermal deformation was minimal at 240 °C nozzle temperature while hot bed temperature was 90 °C. The optimal ratio of extrusion speed to filling speed was 0.87, and the best aspect ratio was 0.25.

2019 ◽  
Vol 25 (7) ◽  
pp. 1145-1154 ◽  
Author(s):  
Xia Gao ◽  
Daijun Zhang ◽  
Xiangning Wen ◽  
Shunxin Qi ◽  
Yunlan Su ◽  
...  

Purpose This work aims to develop a new kind of semicrystalline polymer filament and optimize its printing parameters in the fused deposition modeling process. The purpose of this work also includes producing FDM parts with good ductility. Design/methodology/approach A new kind of semicrystalline filaments composed of long-chain polyamide (PA)1012 was prepared by controlling screw speed and pulling speed carefully. The optimal printing parameters for PA1012 filaments were explored through investigating dimensional accuracy and bonding strength of FDM parts. Furthermore, the mechanical properties of PA1012 specimens were also evaluated by varying nozzle temperatures and raster angles. Findings It is found that PA1012 filaments can accommodate for FDM process under suitable printing parameters. The print quality and mechanical properties of FDM parts highly depend on nozzle temperature and bed temperature. Even though higher temperatures facilitate stronger interlayer bonding, FDM parts with excellent tensile strength were obtained at a moderate nozzle temperature. Moreover, a bed temperature well above the glass transition temperature of PA1012 can eliminate shrinkage and distortion of FDM parts. As expected, FDM parts prepared with PA1012 filaments exhibit good ductility. Originality/value Results in this work demonstrate that the PA1012 filament allows the production of FDM parts with desired mechanical performance. This indicates the potential for overcoming the dependence on amorphous thermoplastics as a feedstock in the FDM technique. This work also provides insight into the effect of materials properties on the mechanical performance of FDM-printed parts.


2021 ◽  
pp. 089270572110530
Author(s):  
Nagarjuna Maguluri ◽  
Gamini Suresh ◽  
K Venkata Rao

Fused deposition modeling (FDM) is a fast-expanding additive manufacturing technique for fabricating various polymer components in engineering and medical applications. The mechanical properties of components printed with the FDM method are influenced by several process parameters. In the current work, the influence of nozzle temperature, infill density, and printing speed on the tensile properties of specimens printed using polylactic acid (PLA) filament was investigated. With an objective to achieve better tensile properties including elastic modulus, tensile strength, and fracture strain; Taguchi L8 array has been used for framing experimental runs, and eight experiments were conducted. The results demonstrate that the nozzle temperature significantly influences the tensile properties of the FDM printed PLA products followed by infill density. The optimum processing parameters were determined for the FDM printed PLA material at a nozzle temperature of 220°C, infill density of 100%, and printing speed of 20 mm/s.


2019 ◽  
Vol 12 (3) ◽  
pp. 21
Author(s):  
Yijian Liu ◽  
Ming Chen ◽  
Jihong Chen

Fused Deposition Modeling (FDM) technology in 3D printing has beendeveloped for many years. In this paper, a robot FDM 3D printingsystem is proposed and the nozzle temperature control issue isfocused primarily. The temperature measurement adopts a data driven modeling method andthe parameters of the measurement model are trained by the particle swarm optimization algorithm. A practical temperature control method is presented in which thetemperature control of nozzle is divided into two periods. Duringthe temperature flying period, the heating voltage is givenaccording to the current temperature value and its varying trend. In thefalling time of nozzle temperature, the corresponding controlvoltage value is provided correspondingly. Based on this practical control strategy, a partdesigned with Solidworks software is printed using the robot FDM printing system which validates theeffectiveness of the practical temperature control method.


2002 ◽  
Vol 8 (4) ◽  
pp. 248-257 ◽  
Author(s):  
Sung‐Hoon Ahn ◽  
Michael Montero ◽  
Dan Odell ◽  
Shad Roundy ◽  
Paul K. Wright

2019 ◽  
Vol 64 (2) ◽  
pp. 255-264
Author(s):  
Lucie Zarybnicka ◽  
Karel Dvorak ◽  
Zdenka Dostalova ◽  
Hana Vojackova

3D printing is one of the most progressive additive technologies today. It finds its application also in industry. In terms of mechanical properties, the printing design of the product is an important parameter. The presented study investigates the effects of the printing design of a thin-walled 3D polymer model on the mechanical properties of the model. The material used for printing was acrylonitrile-butadiene-styrene (ABS) and the 3D print method was Fused Deposition Modeling (FDM). ABS was tested at various die temperatures and with various printing designs at a constant 3D print speed and identical print bed temperature. We examined the effect of printing temperature and product printing design on the resulting mechanical properties. We compared theoretical and experimental results by CAE–FEM Advanced Simulation modules. Results tensile deformations at maximum load by experiment and simulations are comparable. The best results of testing the mechanical properties were found in the pattern printed at a 45° angle at temperature 285 °C.


2011 ◽  
Vol 464 ◽  
pp. 264-267 ◽  
Author(s):  
Chun Ling Li ◽  
Ge Yan Fu ◽  
Kai Bo Guo

The principle of fused deposition modeling was described, and significant dependence of product quality on nozzle temperature was discussed. The range of forming temperature of ABS resin was investigated by fuzzy comprehensive evaluation, and the optimized theoretical forming temperature was determined to be 216 oC which was very close to the actual value. The progress has important reference value to optimize some other extrusion parameters for technology on FDM machine, thus it underlies fused deposition manufacturing process for functional materials.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1758
Author(s):  
Ming-Hsien Hsueh ◽  
Chao-Jung Lai ◽  
Shi-Hao Wang ◽  
Yu-Shan Zeng ◽  
Chia-Hsin Hsieh ◽  
...  

Fused Deposition Modeling (FDM) can be used to manufacture any complex geometry and internal structures, and it has been widely applied in many industries, such as the biomedical, manufacturing, aerospace, automobile, industrial, and building industries. The purpose of this research is to characterize the polylactic acid (PLA) and polyethylene terephthalate glycol (PETG) materials of FDM under four loading conditions (tension, compression, bending, and thermal deformation), in order to obtain data regarding different printing temperatures and speeds. The results indicated that PLA and PETG materials exhibit an obvious tensile and compression asymmetry. It was observed that the mechanical properties (tension, compression, and bending) of PLA and PETG are increased at higher printing temperatures, and that the effect of speed on PLA and PETG shows different results. In addition, the mechanical properties of PLA are greater than those of PETG, but the thermal deformation is the opposite. The above results will be a great help for researchers who are working with polymers and FDM technology to achieve sustainability.


2018 ◽  
Vol 31 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Shenglong Jiang ◽  
Guangxin Liao ◽  
Dingding Xu ◽  
Fenghua Liu ◽  
Wen Li ◽  
...  

Polyetherimide (PEI) is a kind of high-performance polymer, which possesses a high glass transition temperature ( Tg), excellent flame retardancy, low smoke generation, and good mechanical properties. In this article, PEI was applied in the fused deposition modeling (FDM)–based 3-D printing for the first time. The entire process from filament extrusion to printing was studied. It was observed that the filament orientation and nozzle temperature were closely related to the mechanical properties of printed samples. When the nozzle temperature is 370°C, the mean tensile strength of FDM printing parts can reach to 104 MPa, which is only 7% lower than that of injection molded parts. It can be seen that the 0° orientation set of samples show the highest storage modulus (2492 MPa) followed by the 45° samples, and the 90° orientation set of samples show the minimum storage modulus (1420 MPa) at room temperature. The above results indicated that this technique allows the production of parts with adequate mechanical performance, which does not need to be restricted to the production of mock-ups and prototypes. Our work broke the limitations of traditional FDM technology and expanded the types of material available for FDM to the high-temperature engineering plastics.


Sign in / Sign up

Export Citation Format

Share Document