scholarly journals Susceptibility of HepG2 Cells to Silver Nanoparticles in Combination with other Metal/Metal Oxide Nanoparticles

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2221 ◽  
Author(s):  
Sylwia Męczyńska-Wielgosz ◽  
Maria Wojewódzka ◽  
Magdalena Matysiak-Kucharek ◽  
Magdalena Czajka ◽  
Barbara Jodłowska-Jędrych ◽  
...  

The fast-growing use of nanomaterials in everyday life raises the question about the safety of their use. Unfortunately, the risks associated with the use of nanoparticles (NPs) have not yet been fully assessed. The majority of studies conducted so far at the molecular and cellular level have focused on a single-type exposure, assuming that NPs act as the only factor. In the natural environment, however, we are likely exposed to a mixture of nanoparticles, whose interactions may modulate their impact on living organisms. This study aimed to evaluate the toxicological effects caused by in vitro exposure of HepG2 cells to AgNPs in combination with AuNPs, CdTe quantum dot (QD) NPs, TiO2NPs, or SiO2NPs. The results showed that the toxicity of nanoparticle binary mixtures depended on the type and ratio of NPs used. In general, the toxicity of binary mixtures of NPs was lower than the sum of toxicities of NPs alone (protective effect).

2011 ◽  
Vol 409 (22) ◽  
pp. 4753-4762 ◽  
Author(s):  
Yonggang Wang ◽  
Winfred G. Aker ◽  
Huey-min Hwang ◽  
Clement G. Yedjou ◽  
Hongtao Yu ◽  
...  

2016 ◽  
Vol 9 (4) ◽  
pp. 577-586 ◽  
Author(s):  
Y. Liu ◽  
R. Ran ◽  
C. Hu ◽  
B. Cui ◽  
Y. Xu ◽  
...  

As the number of reported deoxynivalenol (DON) contamination incidents increased steadily over the past decades, there has been a widespread interest in understanding the cellular mechanisms of the toxicological effects of DON using in vitro systems and omics technologies. The present investigation was conducted to understand the metabolomic changes in human hepatocellular carcinoma cells (HepG2) exposed to 10 μM DON for short term (4 h) and long term (12 h) periods, using a non-targeted metabolomics approach. Our results revealed a remarkable metabolic shift from short term to long term exposure to DON in HepG2 cells. Our metabolomics data also confirmed the role of DON induced oxidative stress in DON toxicity. Coupled with pattern recognition and pathway analysis, effects of DON on redox homeostasis, energy balance, lipid metabolism, and potential toxicological mechanisms were discussed, which would facilitate further studies on the risk assessment of the dietary mycotoxin DON.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 713
Author(s):  
Kandi Sridhar ◽  
Baskaran Stephen Inbaraj ◽  
Bing-Huei Chen

Carotenoids are natural pigments widely used in food industries due to their health-promoting properties. However, the presence of long-chain conjugated double bonds are responsible for chemical instability, poor water solubility, low bioavailability and high susceptibility to oxidation. The application of a nanoencapsulation technique has thus become a vital means to enhance stability of carotenoids under physiological conditions due to their small particle size, high aqueous solubility and improved bioavailability. This review intends to overview the advances in preparation, characterization, biocompatibility and application of nanocarotenoids reported in research/review papers published in peer-reviewed journals over the last five years. More specifically, nanocarotenoids were prepared from both carotenoid extracts and standards by employing various preparation techniques to yield different nanostructures including nanoemulsions, nanoliposomes, polymeric/biopolymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid nanoparticles, supercritical fluid-based nanoparticles and metal/metal oxide nanoparticles. Stability studies involved evaluation of physical stability and/or chemical stability under different storage conditions and heating temperatures for varied lengths of time, while the release behavior and bioaccessibility were determined by various in vitro digestion and absorption models as well as bioavailability through elucidating pharmacokinetics in an animal model. Moreover, application of nanocarotenoids for various biological applications including antioxidant, anticancer, antibacterial, antiaging, cosmetics, diabetic wound healing and hepatic steatosis were summarized.


2020 ◽  
Author(s):  
Ting Sun ◽  
Lingling Ou ◽  
Xiaozhen Zhan ◽  
Wenxin Zhao ◽  
Rui Huang ◽  
...  

Abstract Background: Zirconia nanoparticles (ZrO2-NPs) have been increasingly used in industrial, biomedical and dental materials. However, the scientific basis for the toxicological effects of ZrO2-NPs is poorly elucidated, and the understanding of the underlying mechanism is still limited. Results: The hepatic biodistribution and toxicological effects of ZrO2-NPs after intravenous administration (20mg/kg bw) in vivo and the toxicological mechanism toward hepatocytes in vitro were investigated. The liver showed continuous ZrO2-NP accumulations liver over a 28-d period. Moreover, ZrO2-NPs induced oxidative stress and increased inflammatory responses and functional injury in the liver. Hepasteatosis and cell death were observed in histopathological and immunohistochemical studies. RNA-seq identified the main pathways involved in the metabolism, cellular process, and human diseases. The RT-qPCR analysis results showed that ZrO2-NP exposure caused the upregulation of P53, Foxo1, Gadd45g, P21, Caspase3, and PPARα and the downregulation of Igfbp2 and Akt in the liver in response to the ZrO2-NP treatment. Meanwhile, the results of the in vitro studies demonstrated that ZrO2-NPs exposure resulted in cytotoxicity in Hepg2 cells in a dose- and time-dependent manner. ZrO2-NPs were proven to induce oxidative stress, lipid accumulation, cell cycle arrest and cell apoptosis to Hepg2 cells. Western-blot analysis further proved the depression of Igfbp2, activation of Akt-mediated signaling pathway and P53-mediated signaling pathway for Hepg2 cells exposure to ZrO2-NPs. Conclusions: This study proves that ZrO2-NPs have negative impacts on the liver and exhibit potential risks for non-alcoholic fatty liver disease (NAFLD). There is potential concern over ZrO2-NPs' hepatoxicity in biomedical applications and occupational exposure through large-scale production.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 250
Author(s):  
Natividad Isabel Navarro Pacheco ◽  
Radka Roubalova ◽  
Jaroslav Semerad ◽  
Alena Grasserova ◽  
Oldrich Benada ◽  
...  

Titanium dioxide nanoparticles (TiO2 NPs) are manufactured worldwide. Once they arrive in the soil environment, they can endanger living organisms. Hence, monitoring and assessing the effects of these nanoparticles is required. We focus on the Eisenia andrei earthworm immune cells exposed to sublethal concentrations of TiO2 NPs (1, 10, and 100 µg/mL) for 2, 6, and 24 h. TiO2 NPs at all concentrations did not affect cell viability. Further, TiO2 NPs did not cause changes in reactive oxygen species (ROS) production, malondialdehyde (MDA) production, and phagocytic activity. Similarly, they did not elicit DNA damage. Overall, we did not detect any toxic effects of TiO2 NPs at the cellular level. At the gene expression level, slight changes were detected. Metallothionein, fetidin/lysenin, lumbricin and MEK kinase I were upregulated in coelomocytes after exposure to 10 µg/mL TiO2 NPs for 6 h. Antioxidant enzyme expression was similar in exposed and control cells. TiO2 NPs were detected on coelomocyte membranes. However, our results do not show any strong effects of these nanoparticles on coelomocytes at both the cellular and molecular levels.


2019 ◽  
Vol 26 (16) ◽  
pp. 2974-2986 ◽  
Author(s):  
Kwang-sun Kim

Vectors are living organisms that transmit infectious diseases from an infected animal to humans or another animal. Biological vectors such as mosquitoes, ticks, and sand flies carry pathogens that multiply within their bodies prior to delivery to a new host. The increased prevalence of Vector-Borne Diseases (VBDs) such as Aedes-borne dengue, Chikungunya (CHIKV), Zika (ZIKV), malaria, Tick-Borne Disease (TBD), and scrub typhus has a huge impact on the health of both humans and livestock worldwide. In particular, zoonotic diseases transmitted by mosquitoes and ticks place a considerable burden on public health. Vaccines, drugs, and vector control methods have been developed to prevent and treat VBDs and have prevented millions of deaths. However, development of such strategies is falling behind the rapid emergence of VBDs. Therefore, a comprehensive approach to fighting VBDs must be considered immediately. In this review, I focus on the challenges posed by emerging outbreaks of VBDs and discuss available drugs and vaccines designed to overcome this burden. Research into promising drugs needs to be upgraded and fast-tracked, and novel drugs or vaccines being tested in in vitro and in vivo models need to be moved into human clinical trials. Active preventive tactics, as well as new and upgraded diagnostics, surveillance, treatments, and vaccination strategies, need to be monitored constantly if we are to manage VBDs of medical importance.


2020 ◽  
Vol 26 (22) ◽  
pp. 2610-2619 ◽  
Author(s):  
Tarique Hussain ◽  
Ghulam Murtaza ◽  
Huansheng Yang ◽  
Muhammad S. Kalhoro ◽  
Dildar H. Kalhoro

Background: Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. Methods: This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. Results: Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. Conclusion: Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.


2020 ◽  
Vol 16 (3) ◽  
pp. 358-362
Author(s):  
Renan S. Teixeira ◽  
Paulo H.D. Carvalho ◽  
Jair A.K. Aguiar ◽  
Valquíria P. Medeiros ◽  
Ademar A. Da Silva Filho ◽  
...  

Background: Arctigenin is a lignan found in Arctium lappa L. (Asteraceae) that displays anti-inflammatory activities. Previous studies showed that the crude extract of A. Lappa has antitumor activity in human liver carcinoma, lung and stomach cancer cells. The aim of this study was to obtain arctigenin from A. lappa L., as well as to evaluate its antiproliferative effects in cells of liver carcinoma (HepG2) and fibroblasts (NIH/3T3). Methods: Arctigenin was obtained from the hydrolysis of arctiin, which was isolated from the crude extract of A. lappa. The effects of arctigenin and arctiin on HepG2 cell viability and cell adhesion were analyzed by MTT method. Adhesion assay was also carried out to evaluate the antitumor activity. Results: Our results showed that the analytical process to obtain arctigenin was fast and easy. In vitro experiments showed that arctigenin (107-269 μM) decreased HepG2 cells viability and did not cause cytotoxicity on NIH/3T3 cells. Arctigenin (27-269 μM) demonstrated anti-adhesion in HepG2 cells in a concentration-dependent manner, when compared with control. Conclusion: These results suggest a promising pharmacological activity for arctigenin as an antiproliferative compound.


2020 ◽  
Vol 16 (2) ◽  
pp. 196-203 ◽  
Author(s):  
Myoung Hi Yi ◽  
Shakina Yesmin Simu ◽  
Sungeun Ahn ◽  
Verónica Castro Aceituno ◽  
Chao Wang ◽  
...  

Background: Biosynthesis of gold nanoparticles from medicinal plants has become an interesting strategy in biomedical research due to its exclusive properties including less toxic cellular level through its ecofriendly biological function. Objective: To examine the anti-lipid accumulation effect of spherical gold nanoparticles (size 10-20 nm) synthesized from Dendropanax morbifera Léveille (D-AuNPs) in both 3T3-L1 and HepG2 cells. Method: 3T3-L1 preadipocytes and HepG2 hepatocytes were stimulated with cocktail media to generate obese and fatty liver disease models. Cell cytotoxicity and cell proliferation assays were performed in adipocytes at different stages of growth. An anti-lipid accumulation assay was performed in 3T3-L1 obese and HepG2 fatty liver models using different doses of D-AuNPs. Expression of adipogenic genes of PPARγ, CEBPα, Jak2, STAT3, and ap2 and hepatogenic genes PPARα, FAS, and ACC was measured by real-time PCR. In addition, protein expression of PPARγ and CEBPα was evaluated by immunoblotting assay. Result: We found that D-AuNPs (size 10–20 nm) at concentrations up to 100 µg/ml were nontoxic to 3T3-L1 and HepG2 at post-confluent and mature stages. In addition, pretreatment of D-AuNPs at post-confluent stage reduced triglyceride content. In addition, the adipogenesis process was negatively controlled by D-AuNPs, with downregulated PPARγ, CEBPα, Jak2, STAT3, and ap2 expression in 3T3-L1 cells and FAS and ACC levels in HepG2 cells. Conclusion: These data indicated that D-AuNPs exert antiadipogenic properties. We hypothesize that Dendropanax contains a large amount of phenolic compound that coats the surface of gold nanoparticles and has the ability to reduce the excess amount of lipid in both cell lines.


Sign in / Sign up

Export Citation Format

Share Document