scholarly journals In Vitro Interactions of TiO2 Nanoparticles with Earthworm Coelomocytes: Immunotoxicity Assessment

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 250
Author(s):  
Natividad Isabel Navarro Pacheco ◽  
Radka Roubalova ◽  
Jaroslav Semerad ◽  
Alena Grasserova ◽  
Oldrich Benada ◽  
...  

Titanium dioxide nanoparticles (TiO2 NPs) are manufactured worldwide. Once they arrive in the soil environment, they can endanger living organisms. Hence, monitoring and assessing the effects of these nanoparticles is required. We focus on the Eisenia andrei earthworm immune cells exposed to sublethal concentrations of TiO2 NPs (1, 10, and 100 µg/mL) for 2, 6, and 24 h. TiO2 NPs at all concentrations did not affect cell viability. Further, TiO2 NPs did not cause changes in reactive oxygen species (ROS) production, malondialdehyde (MDA) production, and phagocytic activity. Similarly, they did not elicit DNA damage. Overall, we did not detect any toxic effects of TiO2 NPs at the cellular level. At the gene expression level, slight changes were detected. Metallothionein, fetidin/lysenin, lumbricin and MEK kinase I were upregulated in coelomocytes after exposure to 10 µg/mL TiO2 NPs for 6 h. Antioxidant enzyme expression was similar in exposed and control cells. TiO2 NPs were detected on coelomocyte membranes. However, our results do not show any strong effects of these nanoparticles on coelomocytes at both the cellular and molecular levels.

2020 ◽  
Vol 16 (12) ◽  
pp. e1008418
Author(s):  
Thomas F. Varley ◽  
Olaf Sporns ◽  
Aina Puce ◽  
John Beggs

Whether the brain operates at a critical “tipping” point is a long standing scientific question, with evidence from both cellular and systems-scale studies suggesting that the brain does sit in, or near, a critical regime. Neuroimaging studies of humans in altered states of consciousness have prompted the suggestion that maintenance of critical dynamics is necessary for the emergence of consciousness and complex cognition, and that reduced or disorganized consciousness may be associated with deviations from criticality. Unfortunately, many of the cellular-level studies reporting signs of criticality were performed in non-conscious systems (in vitro neuronal cultures) or unconscious animals (e.g. anaesthetized rats). Here we attempted to address this knowledge gap by exploring critical brain dynamics in invasive ECoG recordings from multiple sessions with a single macaque as the animal transitioned from consciousness to unconsciousness under different anaesthetics (ketamine and propofol). We use a previously-validated test of criticality: avalanche dynamics to assess the differences in brain dynamics between normal consciousness and both drug-states. Propofol and ketamine were selected due to their differential effects on consciousness (ketamine, but not propofol, is known to induce an unusual state known as “dissociative anaesthesia”). Our analyses indicate that propofol dramatically restricted the size and duration of avalanches, while ketamine allowed for more awake-like dynamics to persist. In addition, propofol, but not ketamine, triggered a large reduction in the complexity of brain dynamics. All states, however, showed some signs of persistent criticality when testing for exponent relations and universal shape-collapse. Further, maintenance of critical brain dynamics may be important for regulation and control of conscious awareness.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2221 ◽  
Author(s):  
Sylwia Męczyńska-Wielgosz ◽  
Maria Wojewódzka ◽  
Magdalena Matysiak-Kucharek ◽  
Magdalena Czajka ◽  
Barbara Jodłowska-Jędrych ◽  
...  

The fast-growing use of nanomaterials in everyday life raises the question about the safety of their use. Unfortunately, the risks associated with the use of nanoparticles (NPs) have not yet been fully assessed. The majority of studies conducted so far at the molecular and cellular level have focused on a single-type exposure, assuming that NPs act as the only factor. In the natural environment, however, we are likely exposed to a mixture of nanoparticles, whose interactions may modulate their impact on living organisms. This study aimed to evaluate the toxicological effects caused by in vitro exposure of HepG2 cells to AgNPs in combination with AuNPs, CdTe quantum dot (QD) NPs, TiO2NPs, or SiO2NPs. The results showed that the toxicity of nanoparticle binary mixtures depended on the type and ratio of NPs used. In general, the toxicity of binary mixtures of NPs was lower than the sum of toxicities of NPs alone (protective effect).


2021 ◽  
Vol 13 (6) ◽  
pp. 3200
Author(s):  
Abolghassem Emamverdian ◽  
Yulong Ding ◽  
Farzad Mokhberdoran ◽  
Zishan Ahmad ◽  
Yinfeng Xie

The recent emerging evidence reveals that titanium dioxide nanoparticles (TiO2 NPs) can be used as a wastewater treatment. This study provides new information about the possible detoxification role of TiO2 NPs as a wastewater treatment in plants under heavy metal stress, with an emphasis on the mechanisms involved. Here, we investigated the effects of TiO2 NPs as one wastewater treatment on a bamboo species (Arundinaria pygmaea L.) under in vitro Cadmium (Cd) toxicity conditions. A factorial experiment was conducted in a completely randomized design with four replications of four concentrations of Cd (50, 100, 200, and 300 µM) alone and in combination with 100 and 200 µM TiO2 NPs as two wastewater treatments, as well as a control treatment. The results indicated that TiO2 NPs concentrations enhanced enzymatic and non-enzymatic antioxidant activities and proline accumulation as well as reducing hydrogen peroxide (H2O2), superoxide radical (O2•−), and malondialdehyde (MDA) levels, which led to improved photosynthetic parameters with an eventual increase in plant biomass as compared to the control treatment. Therefore, TiO2 NPs improved the photosynthetic parameters of bamboo under Cd toxicity, which led to an increase in plant biomass. We concluded that the wastewater treatments of TiO2 NPs improved bamboo biomass through the scavenging of reactive oxygen species (ROS) compounds (H2O2 and O2•−), which was induced by the stimulation of the antioxidant capacity of the plant. TiO2 also protected cell membranes by reducing lipoperoxidation in bamboo under Cd toxicity. The concentration of 200 µM TiO2 NPs had the most impact in reducing Cd toxicity.


2021 ◽  
Vol 28 ◽  
pp. 112-116
Author(s):  
P. A. Trotskyi ◽  
O. V. Shcherbak ◽  
S. I. Kovtun

Aim. To evaluate the effectiveness of the use of nanomaterial in the environment for the further development of in vitro embryos derived from frozen-thawed oocytes in the system of conservation of genetic resources of animals at the cellular level. Methods. Biotechnological, cryobiological, morphological, cytogenetic, and statistical methods, as well as methods of statistical data processing were used in the research. Results. Oocyte-cumulus complexes (OCC) of cows were divided into four groups: three experimental, in which the maturation was performed in a medium containing 0.1, 0.01 and 0.001% UFS/sucrose and control - without the addition of nanobiomaterial. In vitro fertilization of pre-mature frozen-thawed ova of cows and subsequent maturation of embryos in the medium with the addition of UFS/sucrose (0.001%) showed an increase in the number of embryos by 16.7-22.1% compared with the addition of 0.1; 0.01% and 13.1% compared to the control group. It was found that the fragmentation rate of 2-cell cattle embryos decreased from 65.0 to 39.8% with a decrease in the concentration of UFS/sucrose from 0.1 to 0.001%. The most stable indicators of the fragmentation index from 78.4 to 50.0% were observed on the fourth day of embryo cultivation in experimental group B. Conclusions. Reducing the concentration of UFS/sucrose from 0.1 to 0.001% in the composition of the medium for in vitro maturation of cattle embryos leads to an increase of 16.7-22.1% in the number of embryos obtained. Keywords: oocyte-cumulus complex, cryopreservation, nanomaterial, in vitro maturation, embryo.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1511 ◽  
Author(s):  
Filomena Mottola ◽  
Concetta Iovine ◽  
Marianna Santonastaso ◽  
Maria Luisa Romeo ◽  
Severina Pacifico ◽  
...  

Titanium dioxide nanoparticles (NPs-TiO2 or TiO2-NPs) have been employed in many commercial products such as medicines, foods and cosmetics. TiO2-NPs are able to carry antibiotics to target cells enhancing the antimicrobial efficiency; so that these nanoparticles are generally used in antibiotic capsules, like lincomycin, added as a dye. Lincomycin is usually used to treat pregnancy bacterial vaginosis and its combination with TiO2-NPs arises questions on the potential effects on fetus health. This study investigated the potential impact of TiO2-NPs and lincomycin co-exposure on human amniocytes in vitro. Cytotoxicity was evaluated with trypan blue vitality test, while genotoxic damage was performed by Comet Test, Diffusion Assay and RAPD-PCR for 48 and 72 exposure hours. Lincomycin exposure produced no genotoxic effects on amniotic cells, instead, the TiO2-NPs exposure induced genotoxicity. TiO2-NPs and lincomycin co-exposure caused significant increase of DNA fragmentation, apoptosis and DNA damage in amniocytes starting from 48 exposure hours. These results contribute to monitor the use of TiO2-NPs combined with drugs in medical application. The potential impact of antibiotics with TiO2-NPs during pregnancy could be associated with adverse effects on embryo DNA. The use of nanomaterials in drugs formulation should be strictly controlled in order to minimize risks.


Author(s):  
Aleksandra Zielińska ◽  
Beatriz Costa ◽  
Maria V. Ferreira ◽  
Diogo Miguéis ◽  
Jéssica M. S. Louros ◽  
...  

This review offers a systematic discussion about nanotoxicology and nanosafety associated with nanomaterials during manufacture and further biomedical applications. A detailed introduction on nanomaterials and their most frequently uses, followed by the critical risk aspects related to regulatory uses and commercialization, is provided. Moreover, the impact of nanotoxicology in research over the last decades is discussed, together with the currently available toxicological methods in cell cultures (in vitro) and in living organisms (in vivo). A special focus is given to inorganic nanoparticles such as titanium dioxide nanoparticles (TiO2NPs) and silver nanoparticles (AgNPs). In vitro and in vivo case studies for the selected nanoparticles are discussed. The final part of this work describes the significance of nano-security for both risk assessment and environmental nanosafety. “Safety-by-Design” is defined as a starting point consisting on the implementation of the principles of drug discovery and development. The concept “Safety-by-Design” appears to be a way to “ensure safety”, but the superficiality and the lack of articulation with which it is treated still raises many doubts. Although the approach of “Safety-by-Design” to the principles of drug development has helped in the assessment of the toxicity of nanomaterials, a combination of scientific efforts is constantly urgent to ensure the consistency of methods and processes. This will ensure that the quality of nanomaterials is controlled and their safe development is promoted. Safety issues are considered strategies for discovering novel toxicological-related mechanisms still needed to be promoted.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2354
Author(s):  
Mohammad Mamunur Rashid ◽  
Petra Forte Tavčer ◽  
Brigita Tomšič

Nanotechnology has enabled tremendous breakthroughs in the development of materials and, nowadays, is well established in various economic fields. Among the various nanomaterials, TiO2 nanoparticles (NPs) occupy a special position, as they are distinguished by their high availability, high photocatalytic activity, and favorable price, which make them useful in the production of paints, plastics, paper, cosmetics, food, furniture, etc. In textiles, TiO2 NPs are widely used in chemical finishing processes to impart various protective functional properties to the fibers for the production of high-tech textile products with high added value. Such applications contribute to the overall consumption of TiO2 NPs, which gives rise to reasonable considerations about the impact of TiO2 NPs on human health and the environment, and debates regarding whether the extent of the benefits gained from the use of TiO2 NPs justifies the potential risks. In this study, different TiO2 NPs exposure modes are discussed, and their toxicity mechanisms—evaluated in various in vitro and in vivo studies—are briefly described, considering the molecular interactions with human health and the environment. In addition, in the conclusion of this study, the toxicity and biocompatibility of TiO2 NPs are discussed, along with relevant risk management strategies.


2021 ◽  
Vol 4 (1) ◽  
pp. 1-21
Author(s):  
Bogdan Andreii Miu ◽  
Anca Dinischiotu

In the green synthesis of titanium dioxide nanoparticles (TiO2 NPs) chemical reagents are replaced with biological extracts. Conventional methods used in the manufacture of TiO2 NPs raise environmental issues as they use harmful chemicals and spend a high amount of energy. At a laboratory scale, biologically synthesized titanium dioxide nanoparticles (bio-TiO2 NPs) proved to be a suitable alternative to the chemically synthesized ones. The biological activity of NPs is mainly determined by their shape, size and crystalline structure. However, these characteristics are hardly controlled when natural sources of reagents are used and so bio-TiO2 NPs did not reach an advanced technology readiness level. In this paper, we reviewed the majority of the available studies referring to bio-TiO2 NPs. Our aim is to briefly present the efficiency of biochemicals from different living organisms in producing TiO2 nano-scale particles as well as the benefits bio-TiO2 NPs would bring to the biomedical, agricultural and industrial sectors. Finally, based on the available data we discuss the sustainability of bio-TiO2 NPs referring to their possible environmental, economic and societal impacts.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 465 ◽  
Author(s):  
Alena Kazimirova ◽  
Naouale El Yamani ◽  
Laura Rubio ◽  
Alba García-Rodríguez ◽  
Magdalena Barancokova ◽  
...  

The genotoxicity of anatase/rutile TiO2 nanoparticles (TiO2 NPs, NM105 at 3, 15 and 75 µg/cm2) was assessed with the mammalian in-vitro Hypoxanthine guanine phosphoribosyl transferase (Hprt) gene mutation test in Chinese hamster lung (V79) fibroblasts after 24 h exposure. Two dispersion procedures giving different size distribution and dispersion stability were used to investigate whether the effects of TiO2 NPs depend on the state of agglomeration. TiO2 NPs were fully characterised in the previous European FP7 projects NanoTEST and NanoREG2. Uptake of TiO2 NPs was measured by transmission electron microscopy (TEM). TiO2 NPs were found in cytoplasmic vesicles, as well as close to the nucleus. The internalisation of TiO2 NPs did not depend on the state of agglomeration and dispersion used. The cytotoxicity of TiO2 NPs was measured by determining both the relative growth activity (RGA) and the plating efficiency (PE). There were no substantial effects of exposure time (24, 48 and 72 h), although a tendency to lower RGA at longer exposure was observed. No significant difference in PE values and no increases in the Hprt gene mutant frequency were found in exposed relative to unexposed cultures in spite of evidence of uptake of NPs by cells.


Plant Disease ◽  
2020 ◽  
Vol 104 (1) ◽  
pp. 211-221
Author(s):  
Juliana González-Tobón ◽  
Richard Childers ◽  
Carolina Olave ◽  
Melissa Regnier ◽  
Alejandra Rodríguez-Jaramillo ◽  
...  

Phytophthora infestans is the causal agent of late blight disease of potatoes and tomatoes. This disease causes devastating economic losses each year, and control is mainly achieved by the use of fungicides. Unfortunately, populations of P. infestans resistant to fungicides have been documented. Furthermore, studies have reported that sensitive isolates to the phenylamide fungicide, mefenoxam, become less sensitive in vitro after a single passage through sublethal concentrations of fungicide-amended medium. The first objective of this study was to investigate if isolates of P. infestans are capable of acquiring resistance to two additional systemic fungicides, fluopicolide (benzamide) and cymoxanil (cyanoacetamide-oxime). In contrast to the situation with mefenoxam, exposure of isolates to sublethal concentrations of fluopicolide and cymoxanil did not induce reduced sensitivity to these two fungicides. The second objective was to assess if reduced sensitivity to mefenoxam could occur in naturally sensitive isolates of other Phytophthora species and of Phytopythium sp., another oomycete plant pathogen. All Phytophthora spp. assessed (P. infestans, P. betacei, and P. pseudocryptogea) as well as Phytopythium sp. acquired resistance to mefenoxam after previous exposure through medium containing 1 µg ml−1 of mefenoxam. Interestingly, isolate 66 of Phytopythium sp. and the isolate of P. pseudocryptogea tested do not seem to be acquiring resistance to mefenoxam after exposure to medium containing 5 µg ml−1 of this fungicide. The tested isolates of P. palmivora and P. cinnamomi were extremely sensitive to mefenoxam, and thus it was not possible to perform a second transfer to access acquisition of resistance to this fungicide.


Sign in / Sign up

Export Citation Format

Share Document