scholarly journals Performance Evaluation and Optimization of Dyes Removal using Rice Bran-Based Magnetic Composite Adsorbent

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2764 ◽  
Author(s):  
Chih Ming Ma ◽  
Gui Bing Hong ◽  
Yi Kai Wang

Although several studies have explored green adsorbent synthesized from many types of agriculture waste, this study represents the first attempt to prepare an environmentally friendly rice bran/SnO2/Fe3O4-based absorbent with economic viability and material reusability, for the promotion of sustainable development. Here, rice bran/SnO2/Fe3O4 composites were successfully synthesized and applied for adsorption of reactive blue 4 (RB4) and crystal violet (CV) dyes in aqueous solutions. The adsorption data were well-fitted by the Langmuir isotherm model and the pseudo-second-order kinetic model. The maximum adsorption capacities of the RB4 and CV dyes as indicated by the Langmuir isotherm model were 218.82 and 159.24 mg/g, respectively. As results of response surface methodology (RSM) showed, the quadratic model was appropriate to predict the performance of RB4 dye removal. The findings exhibited that an optimum removal rate of 98% was achieved at 60 °C for pH 2.93 and adsorption time of 360 min. Comparative evaluation of different agricultural wastes indicated that the rice bran/SnO2/Fe3O4 composite appeared to be a highly promising material in terms of regeneration and reusability, and showed that the composite is a potential adsorbent for dye removal from aqueous solutions. Overall, the study results clearly suggest that an adsorbent synthesized from rice bran/SnO2/Fe3O4 magnetic particle composites provides encouraging adsorption capacity for practical applications for environmental prevention.

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 942 ◽  
Author(s):  
Huo-Xi Jin ◽  
Hong Xu ◽  
Nan Wang ◽  
Li-Ye Yang ◽  
Yang-Guang Wang ◽  
...  

The ability to remove toxic heavy metals, such as Pb(II), from the environment is an important objective from both human-health and ecological perspectives. Herein, we describe the fabrication of a novel carboxymethylcellulose-coated metal organic material (MOF-5–CMC) adsorbent that removed lead ions from aqueous solutions. The adsorption material was characterized by Fourier-transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. We studied the functions of the contact time, pH, the original concentration of the Pb(II) solution, and adsorption temperature on adsorption capacity. MOF-5–CMC beads exhibit good adsorption performance; the maximum adsorption capacity obtained from the Langmuir isotherm-model is 322.58 mg/g, and the adsorption equilibrium was reached in 120 min at a concentration of 300 mg/L. The adsorption kinetics is well described by pseudo-second-order kinetics, and the adsorption equilibrium data are well fitted to the Langmuir isotherm model (R2 = 0.988). Thermodynamics experiments indicate that the adsorption process is both spontaneous and endothermic. In addition, the adsorbent is reusable. We conclude that MOF-5–CMC is a good adsorbent that can be used to remove Pb(II) from aqueous solutions.


2021 ◽  
Author(s):  
Nur Shazwani Abdul Mubarak ◽  
N.N. Bahrudin ◽  
Ali H. Jawad ◽  
B.H. Hameed ◽  
Sumiyyah Sabar

Abstract In this work, sulfonated chitosan montmorillonite composite (S-CS-MT) beads were synthesized using a microwave irradiation method designed to have a better saving-time procedure. The potency of S-CS-MT as an adsorbent was assessed for the removal of cationic dyes such as methylene blue (MB) from aqueous solution. The batch adsorption experiments indicated that MB adsorption onto S-CS-MT follows the Pseudo-second-order kinetic and Langmuir isotherm model. The maximum extent obtained from the Langmuir isotherm model for MB adsorption was 188.2 mg g− 1 at 303 K. The thermodynamic study indicated that the adsorption reaction is favorable and spontaneous. These findings indicated that montmorillonite chitosan grafted with the sulfonate group has the ability and efficacy as biohybrid adsorbent for the adsorption of cationic dyes.


Author(s):  
Jude Iloabuchi Obianyo

Rice husk adsorbent was studied to assess its efficiency in adsorption of nickel from paint industry effluent and to derive vital parameters that would assist in making timely decisions in tertiary treatment of wastewater. Standard methods were used in conducting the experiments. Results showed that significant adsorption of 84.77% of nickel was removed by carbonized rice husk (CRH) in 10 minutes and 98.42% in 60 minutes, a difference of 13.65%. Optimum pH of 8 was observed as 98.91% of nickel was adsorbed. Slight change in the adsorption efficiencies was noticed between 0.2 g and 0.4 g doses of CRH adsorbent, but reasonable and insignificant change occurred between 0.4 g and 1.0 g doses. Langmuir isotherm plot showed that separation factor was 0.998 an indication of favorable adsorption and a good fit for the Langmuir isotherm model. Therefore, the adsorption process was better described by the Langmuir equilibrium isotherm model. Adsorption intensity of 2.02 was observed in the Freundlich model, a value greater than 1.0 an indication of unfavorable adsorption. Lagergren pseudo first- and second-order plots showed that R2 = 0.799 for pseudo first-order and R2 = 0.969 for pseudo second-order reactions, an indication that adsorption of nickel by CRH follow Lagergren second-order kinetic. FTIR spectra identified N-H, O-H, C=H, C=O, C=C-C, C-Cl, P-O-C, and cis-C-H out-of-plane bend stretching bands as the functional groups involved in nickel adsorption by CRH adsorbent. It was concluded that rice husk is a good adsorbent in tertiary treatment of wastewater.


2009 ◽  
Vol 620-622 ◽  
pp. 555-558
Author(s):  
Yi Li ◽  
Xue Gang Luo ◽  
Zhao Liu ◽  
Yan Huang ◽  
Xiao Yan Long

The modified valonian tannin was prepared through sulfonated-mannich reaction and used to adsorb Cu (II) from the aqueous solutions. The adsorption capacity rapidly reached equilibrium within 2 hours. The effect of pH on adsorption was apparent, the amount of adsorption increased significantly as the pH increased from 2.0 to 4.0 and then leveled off at pH 4.0-6.0. Equilibrium data fitted well with Freundlich isotherm model compared to Langmuir isotherm model, indicating that adsorption takes place on heterogeneous surface of the modified valonia tannin. The adsorption capacity was increased by increasing initial concentrations. The maximum adsorption capacity of cooper ion was determined to be 56.200 mg/g at 100 mg/L concentration.


2020 ◽  
Vol 18 (1) ◽  
pp. 843-849
Author(s):  
Mirza Nadeem Ahmad ◽  
Arif Hussain ◽  
Muhammad Naveed Anjum ◽  
Tajamal Hussain ◽  
Adnan Mujahid ◽  
...  

AbstractChitosan was grafted with polyorthoethylaniline through oxidative polymerization using ammonium persulfate as oxidant, resulting in the formation of a biocomposite of chitosan-grafted-polyorthoethylaniline (CH-g-POEA). The synthesized biocomposite (CH-g-POEA) was characterized by FTIR, SEM, and TGA. Adsorption of methyl orange (MO) dye by CH-g-POEA was studied, wherein the Langmuir isotherm model with a R2 of 0.9979 and adsorption capacity of 45.7 mg/g was evaluated.


2020 ◽  
Vol 9 (1) ◽  
pp. 770-782
Author(s):  
Tianpeng Li ◽  
Jing Fan ◽  
Tingting Sun

AbstractA novel porous ceramsite was made of municipal sludge, coal fly ash, and river sediment by sintering process, and the performance of batch and fixed-bed column systems containing this material in the removal of acid red G (ARG) dye from aqueous solutions was assessed in this study. The results of orthogonal test showed that sintering temperature was the most important determinant in the preparation of porous ceramsite, and it possesses developed pore structure and high specific surface area. Batch experiment results indicated that the adsorption process of ARG dye toward porous ceramsite was a spontaneous exothermic reaction, which could be better described with Freundlich–Langmuir isotherm model (R2 > 0.992) and basically followed the pseudo-first-order kinetic equation (R2 > 0.993). Column experiment results showed that when the porous ceramsite was used as packing material, its adsorption capacity was roughly improved by 3.5 times compared with that in batch system, and the breakthrough behavior was simulated well with Yoon–Nelson model, with R2 > 0.954. This study suggested that the novelty man-made porous ceramsite obtained from solid wastes might be processed as a certain cost-effective treatment material fit for the dye removal in aqueous solutions.


2012 ◽  
Vol 9 (4) ◽  
pp. 1823-1834 ◽  
Author(s):  
P. N. Palanisamy ◽  
A. Agalya ◽  
P. Sivakumar

Poly Pyrrle saw dust composite was prepared by reinforcement of natural wood saw dust (obtained fromEuphorbia Tirucalli Lwood) and Poly Pyrrole matrix phase. The present study investigates the adsorption behaviour of Poly Pyrrole Saw dust Composite towards reactive dye. The batch adsorption studies were carried out by varying solution pH, initial dye concentration, contact time and temperature. The kinetic study showed that adsorption of Reactive Red by PPC was best represented by pseudo-second order kinetics with ion exchange adsorption. The equilibrium data were analyzed by Freundlich and Langmuir isotherm model. The equilibrium isotherm data were fitted well with Langmuir isotherm model. The maximum monolayer adsorption capacities calculated by Langmuir model were 204.08 mg/g for Reactive Red at 303 K. The thermodynamic parameters suggest the spontaneous, endothermic nature of ion exchange adsorption with weak Vader walls force of attraction. Activation energy for the adsorption of Reactive by Poly Pyrrole Composite was 11.6387 kJ/mole, Isosteric Heat of adsorption was 48.5454 kJ/mole also supported the ion exchange adsorption process in which forces of attraction between dye molecules and PPC is weak.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


2014 ◽  
Vol 71 (2) ◽  
pp. 174-182 ◽  
Author(s):  
Ruihua Huang ◽  
Qian Liu ◽  
Lujie Zhang ◽  
Bingchao Yang

A kind of biocomposite was prepared by the intercalation of chitosan in bentonite and the cross-linking reaction of chitosan with glutaraldehyde, which was referred to as cross-linked chitosan/bentonite (CCS/BT) composite. Adsorptive removal of methyl orange (MO) from aqueous solutions was investigated by batch method. The adsorption of MO onto CCS/BT composite was affected by the ratio of chitosan to BT and contact time. pH value had only a minor impact on MO adsorption in a wide pH range. Adsorption kinetics was mainly controlled by the pseudo-second-order kinetic model. The adsorption of MO onto CCS/BT composite followed the Langmuir isotherm model, and the maximum adsorption capacity of CCS/BT composite calculated by the Langmuir model was 224.8 mg/g. Experimental results indicated that this adsorbent had a potential for the removal of MO from aqueous solutions.


2007 ◽  
Vol 119 ◽  
pp. 303-306
Author(s):  
Y. Jung ◽  
Jei Won Yeon ◽  
Yeong Keong Ha

We present the preparation and Cu(II) adsorption characteristics of a new and innovative composite which was composed of a carboxymethylated polyethyleneimine (CM-PEI) and an activated carbon with a nanopore less than 2 nm in diameter. In this study, we examined the adsorption phenomena of Cu(II) on the CM-PEI/F400 composite and evaluated the adsorption data using three kinds of isotherm models (Langmuir, Freundlich, and Temkin isotherms). It was found that the adsorption of Cu(II) on the CM-PEI/F400 composite obeys the Langmuir isotherm model. Furthermore, The Cu element mapping results showed that Cu was well distributed throughout all the surface of the composite particle, suggesting that the surface of the F400 particle was uniformly covered with CM-PEI.


Sign in / Sign up

Export Citation Format

Share Document