scholarly journals Biobased Polyethylene Hybrid Composites with Natural Fiber: Mechanical, Thermal Properties, and Micromechanics

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2967
Author(s):  
Patrycja Bazan ◽  
Przemysław Nosal ◽  
Barbara Kozub ◽  
Stanisław Kuciel

The work assumed the possibility of the introduction natural fibers as a hybrid reinforcement of bio-polyethylene composites. Coconut fibers, basalt fibers and wood flour were used in different combination as a hybrid merger. Mechanical tests were conducted. An increase in the mechanical properties was shown as an effect of the introduction of the fibers info the polymeric matrix. A synergic influence of hybrid reinforcement was also presented. Experimental results were compared with modeling parameters. The hydrothermal and accelerated thermal ageing effects on the mechanical behavior of composites were presented. Scanning electron microscope images were observed in order to analyze structure of examined composites.

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2595 ◽  
Author(s):  
Patrycja Bazan ◽  
Dariusz Mierzwiński ◽  
Rafał Bogucki ◽  
Stanisław Kuciel

The study evaluated the possibility of using natural fibers as a reinforcement of bio-polyethylene. Flax, coconut, basalt fiber, and wood flour were used in the work. Strength tests like static tensile test, three-point flexural test, or impact strength showed a positive effect of reinforcing bio-polyethylene-based composites. The effect of water and thermal ageing on the mechanical behavior of composites was assessed. In order to analyze the structure, SEM microscope images were taken and the effect of natural fibers on the change in the nature of cracking of composites was presented. Composites with natural fibers at a content of 12% by weight, resulting in increase of strength and rigidity of materials. The greatest strengthening effect for natural fibers was obtained for the composite with basalt fibers.


2021 ◽  
Vol 32 ◽  
pp. 85-97
Author(s):  
Gunturu Bujjibabu ◽  
Vemulapalli Chittaranjan Das ◽  
Malkapuram Ramakrishna ◽  
Konduru Nagarjuna

Banana/Coir fiber reinforced polypropylene hybrid composites was formulated by using twin screw extruder and injection molding machine. Specimens were prepared untreated and treated B/C Hybrid composites with 4% and 8% of MA-g-PP to increase its compatibility with the polypropylene matrix. Both the without MA-g-PP and with MA-g-PP B/C hybrid composites was utilized and three levels of B/C fiber loadings 15/5, 10/10 and 5/15 % were used during manufacturing of B/C reinforced polypropylene hybrid composites. In this work mechanical performance (tensile, flexural and impact strengths) of untreated and treated (coupling agent) with 4% and 8% of MA-g-PP B/C fibers reinforced polypropylene hybrid composite have been investigated. Treated with MA-g-PP B/C fibers reinforced specimens explored better mechanical properties compared to untreated B/C fibers reinforced polypropylene hybrid composites. Mechanical tests represents that tensile, flexural and impact strength increases with increase in concentration of coupling agent compared to without coupling agent MA-g-PP hybrid composites . B/C fibers reinforced polymer composites exhibited higher tensile, flexural and impact strength at 5% of Banana fiber, 15% of fiber Coir in the presence of 8% of MA-g-PP compared to 4% of MA-g-PP and untreated hybrid composites. The percentage of water absorption in the B/C fibers reinforced polypropylene hybrid composites resisted due to the presence of coupling agent MA-g-PP and thermogravimetry analysis (TGA) also has done.


Author(s):  
M. Dinesh ◽  
R. Asokan ◽  
S. Vignesh ◽  
Chitikena Phani Kumar ◽  
Rajulapati Ravichand

Over the years, application of composite materials has got wider. So there is a necessity for development of new materials to satisfy the environmental requirements. It is viable through the process of hybridization of natural fibers to synthetic fibers. This investigation is carried out to determine the tensile and flexural strength of hybrid composites with various fiber combinations and stacking sequence. Thus it is easy to identify the natural fiber hybrid combination with high mechanical properties under static and varying thermal load conditions. The various fiber materials are meticulously chosen and three conventional and six different hybrid laminates were fabricated with various stacking sequences of selected fibers using hand layup technique. The tensile and flexural properties are determined through mechanical testing and compared with conventional materials. The failure morphologies are captured and investigated with zoom optical cameras. On analyzing the results, it is observed that carbon-flax hybrid composites exhibit nearly equivalent specific strength at a reduced cost compared to the carbon/glass fiber hybrid composites and also the effect of the stacking sequence in mechanical properties is elucidated through this study. Varying thermal load analysis reveals that there is a considerable loss in mechanical properties due to thermal exposure.


2019 ◽  
Vol 8 (3) ◽  
pp. 2450-2453

Usage of Natural Fiber Composites (NFC) is increased rapidly due to the bio degradability nature of the fibers. These natural fibers are mixed with synthetic fibers to obtain better mechanical properties. In this study, pine apple and glass fiber reinforced epoxy composites are developed and their mechanical properties were evaluated. Composites were prepared by varying the fibers content and by using hand layup process with glass moulds of size 160 x 160 x 3 mm3 . The obtained laminates were sliced as per the ASTM criterion to test the properties. Higher glass fiber content in the composite specimen obtained higher mechanical properties. The composites can be utilized for the purpose of manufacturing components like doors panels, desks, roof tops etc.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 517 ◽  
Author(s):  
Carlo Santulli

Hybrid composite laminates including carbon fibers and natural fibers, hence basalt and/or vegetable ones, draw on the experiences accumulated in studying the hybridization of fiberglass with carbon or natural fibers. Yet, in the case of carbon/natural fiber composites, the sense is different: in particular, the idea is to accept the reduction of properties from bare carbon fiber composites and the unavoidable complication in processing, induced by hybridization. The compensation obtained, which offers a rationale to this operation, is the improved toughness and a significant modification of the different modes of failure. This would bring a higher energy absorption and a substantially more effective damage tolerance. The aforementioned characteristics are particularly of interest in the case of flexural properties, impact properties, and residual post-impact performance.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Reza Mahjoub ◽  
Jamaludin Bin Mohamad Yatim ◽  
Abdul Rahman Mohd Sam

According to environmental concerns and financial problems, natural fibers have become interesting and fascinating nowadays to be used as an industrial material and structural material for rehabilitating of structures. Oil palm empty fruit bunch fiber (OPF) is a natural fiber which is found a lot in tropical areas. Scientists have used OPF fiber with many types of resins such as epoxy, polypropylene, polyester, and phenol formaldehyde. Therefore, this paper focused on the properties of OPF fiber and gathered mechanical properties of OPF composites (OPF as reinforcement of polymer) reported by other researchers in terms of tensile and flexural properties. Furthermore, the chemical surface modification methods to solve the interfacial bonding of fiber and polymer were mentioned. In addition, the results of hybrid composites of OPF were also discussed in this paper. Meanwhile, the results of composites were compared to pure resin properties and also the stress-strain diagram and internal strain energy of composites were considered. Besides, the effects of adding OPF to other composites to make a new hybrid composite were indicated. Finally, it is clear that the use of oil palm fiber composites for structural elements for bearing loads is not recommended but the usage of OPF composites for secondary structural elements may be recommended due to future researches.


2021 ◽  
Author(s):  
J Praveenkumara ◽  
Vidya Sagar H N ◽  
P Madhu ◽  
Yashas Gowda ◽  
Sanjay Mavinkere Rangappa ◽  
...  

Abstract The composite industry is attracted by natural fiber reinforced polymer materials for various valuable engineering applications due to its eco-friendly nature, less cost, enhanced mechanical properties and thermal properties. This present work aimed at incorporating sisal and kevlar woven fabrics with the epoxy matrix and to study the effect of pongamia pinnata shell powder on this sisal/ kevlar hybrid composites. The six different laminates were prepared using hand lay-up method with filler percentage varying 2 %, 4 % and 6 %. The prepared laminates cut according to ASTM standards for performing different mechanical tests. Results reveal that reduction of void percentage was observed at higher filler contents, while the incorporation of kevlar fiber enhances the impact, tensile strength and tensile modulus values. The flexural strength and inter laminar shear strength were higher for 2 % filler composites, while the highest flexural modulus, hardness values were observed for 6 % filler filled composites. The water absorption percentage was maximum for sisal laminate (L-1) and minimum for kevlar laminate L-2. The fractured tensile and flexural specimens were analyzed using scanning electron microscope (SEM).


2018 ◽  
Vol 52 (19) ◽  
pp. 2641-2650 ◽  
Author(s):  
U Saeed ◽  
MA Nawaz ◽  
HA Al-Turaif

The advanced development of biocomposites made of biodegradable polymers and natural fibers has initiated great interest because the resultant polymer will degrade absolutely and will not emit toxic substances. Among the biodegradable polymers, the poly(butylene succinate) and poly(lactic acid) have diverse commercial applications and the natural fiber such as wood flour is renewable and cheaper alternative to synthetic fiber. The properties of the composite made of poly(butylene succinate)/poly(lactic acid) blend and wood flour are not compatible due to the poor wettability and interfacial adhesion. Therefore, in the study presented, the Fusabond MB 100 D has been used to improve the interfacial bonding between poly(butylene succinate)/poly(lactic acid) blend and the dispersed wood flour. The results reveal that the addition of FB not only increases the tensile strength but also improves the impact strength of poly(butylene succinate)/poly(lactic acid)wood flour composite under high dynamic loading. Moreover, when Fusabond MB 100 D is added as a coupling agent to the poly(butylene succinate)/poly(lactic acid)wood flour composite results of X-ray photo spectroscopy, fracture surface morphology and dynamical mechanical property indicate the interaction between the poly(butylene succinate)/poly(lactic acid) blend with the wood flour.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3514
Author(s):  
M. J. Suriani ◽  
R. A. Ilyas ◽  
M. Y. M. Zuhri ◽  
A. Khalina ◽  
M. T. H. Sultan ◽  
...  

Increasing scientific interest has occurred concerning the utilization of natural fiber-enhanced hybrid composites that incorporate one or more types of natural enhancement. Annual natural fiber production is estimated to be 1,783,965 × 103 tons/year. Extensive studies have been conducted in the domains of natural/synthetic as well as natural/natural hybrid composites. As synthetic fibers have better rigidity and strength than natural fibers, natural/synthetic hybrid composites have superior qualities via hybridization compared to natural composites in fibers. In general, natural fiber compounds have lower characteristics, limiting the use of natural composites reinforced by fiber. Significant effort was spent in enhancing the mechanical characteristics of this group of materials to increase their strengths and applications, especially via the hybridization process, by manipulating the characteristics of fiber-reinforced composite materials. Current studies concentrate on enhancing the understanding of natural fiber-matrix adhesion, enhancing processing methods, and natural fiber compatibility. The optimal and resilient conceptions have also been addressed due to the inherently more significant variabilities. Moreover, much research has tackled natural fiber reinforced hybrid composite costs. In addition, this review article aims to offer a review of the variables that lead to the mechanical and structural failure of natural fiber reinforced polymer composites, as well as an overview of the details and costings of the composites.


Author(s):  
Gobi K ◽  
Kaleeswaran M ◽  
Amaresh D ◽  
Dhanush R

Now-a-days, The natural sisal/bamboos from renewable natural resources offer the potential to act as a reinforcing material for polymer composites alternative to the use of glass, carbon and wood. Among various natural fibers, sisal or bamboo is most widely used natural fiber due to its advantages like easy availability, low density, low production cost and satisfactory mechanical properties. For a composite material, its mechanical behavior depends on many factors such as fiber content, orientation, types, length etc. Attempts have been made in this research work to study the effect of loading on the physical and mechanical behavior of sisal/bamboo reinforced epoxy-based hybrid composites.


Sign in / Sign up

Export Citation Format

Share Document