scholarly journals Physical Properties and Microstructure of Concrete with Waste Basalt Powder Addition

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3503 ◽  
Author(s):  
Magdalena Dobiszewska ◽  
Ahmet Beycioğlu

The natural aggregates are one of the main components in the production of concrete. Although deposits of natural aggregates lie on the earth’s surface or at low depths and belong to common deposits, the shortage of aggregate, especially natural sand, is presently observed in many countries. In such a situation, one is looking for other materials that can be used as a substitute for natural aggregates in mortars and concrete production. This paper presents the results of an experimental investigation carried out to evaluate the potential usage of waste basalt powder in concrete production. For this purpose, the waste basalt powder, which is a by-product of the production of mineral–asphalt mixtures, was substituted with 10%, 20%, and 30% sand replacement. In the experimental program, the workability, compressive strength, water transport properties, and microstructural performances were evaluated. The results showed that the production of concretes that feature a strong internal structure with decreased water transport behavior is possible with waste basalt usage. Furthermore, when waste basalt powder is used as a partial sand replacement, the compressive strength of concretes can be increased up to 25%. According to the microstructural analyses, the presence of basalt powder in concrete mixes is beneficial for cement hydration products, and basalt powder substituted concretes have lower porosity within the interfacial transition zone.

2020 ◽  
Vol 13 (1) ◽  
pp. 45-53
Author(s):  
Sajid Kamil Zemam

This study seeks to develop a sustainable construction technique based on the introduction of a specific method for improving concrete compressive strength through a proposed multi-vibration compaction method. An experimental program is performed to evaluate the effect of the proposed compaction technique on fresh silica fume concrete undergoing the initial setting. Multi-vibration intends to minimize concrete production cost because it upgrades the compressive strength of the same materials with better utilization of the vibration energy required for compaction. The collected experimental data presented assign relationships among vibration duration, vibration cycles or phases, and compressive strength upgrading of single vibrated, revibrated, and multi-vibrated specimens for analysis and discussion. This study shows that multi-vibration phases, rather than single vibration or revibration techniques, are powerful techniques for improving concrete compressive strength. The results indicated that the existence of an optimum multi-vibration mode was dominated by phase number and vibration duration and confirm the reliability vibration overall time duration recommended by ACI 309 which relates to a single vibration time limit to be considered in the case of multi vibration technique. Multi-vibration Mode 8 (subjected to three vibration phases 10, 20, and 30 sec ) has the best effect for the considered mixtures among the specific vibration modes. The maximum improvement ratio is 1.25, which is associated with the plastic mixture.   


2021 ◽  
Vol 18 (3) ◽  
pp. 209-218
Author(s):  
S.O.A. Olawale ◽  
M.A. Kareem ◽  
O.Y. Ojo ◽  
A.U. Adebanjo ◽  
M.O. Thanni

The wide variety of industrial and domestic applications of plastic products has fuelled a global trend in their use. The vast amount of plastic items that are discarded after use, on the other hand, pollutes the environment. In light of this, the current study  investigated the use of Polyethylene Terephthalate (PET) as substitute for natural sand in concrete production. Locally sourced river sand was replaced with industrially ground waste PET in proportions of 4 to 20% at a step of 4% by the weight of natural sand whereas other concrete constituents (cement, granite, water-cement ratio and superplasticizer) were kept constant. A Grade M40 concrete with a mix proportion of 1:1:2:0.35 (cement: sand: granite: water-to-cement ratio) was used for all concrete mixes.  Concrete without PET represents the control. Fresh (Slump) and hardened (compressive, split tensile and flexural) properties of the produced concrete were assessed using standard testing methods. The results showed that the slump of concrete decreased by 1.8% and 12.5% with an increase in PET content from 0 to 20%. The 28-day compressive strength of concrete containing PET was lower than the control. However, concrete with 4% PET compared considerably well with control with the compressive strength value exceeding the target strength of 40 N/mm2 while concretes containing PET beyond 4% had compressive strength below the target strength. The split tensile strength of concrete containing 4% PET was higher than that of the control but exhibited lower flexural strength than the control at the age of 28 days. It was concluded that the reuse of PET as a substitute for natural sand as an alternative waste disposal solution for eco-friendly concrete development and attainment of a pollution-free environment is viable.


2017 ◽  
Vol 864 ◽  
pp. 278-283 ◽  
Author(s):  
Saffuan Wan Ahmad ◽  
Khairunisa Muthusamy ◽  
Hanafi Hashim ◽  
Maizatil Akma Yaacob

The growing construction industry that demands for more natural sand supply has indirectly causes the escalation of river sand mining activity. Excessive sand mining affects the water quality and habitats of aquatic life. At the same time, the continuous dumping of palm oil fuel ash, a by-product of oil palm mill causes pollution to the environment. In order to preserve the natural sand and reduce amount of palm oil fuel ash disposed as waste, the present study investigates the potential use of palm oil fuel ash in concrete production. Thus, the effect of unground palm oil fuel ash as partial sand replacement towards workability and compressive strength of concrete is discussed in this paper. A total of six mixes were used in this experimental work. Plain concrete containing 100% river sand was used as reference specimen. The rest of the mixes were prepared by integrating unground palm oil fuel ash by 2%, 4%, 6%, 8% and 10% by weight of sand. All specimens were prepared in form of cubes and subjected to water curing until the testing age. Slump test were conducted on the fresh mix to determine the concrete workability. Compressive strength test were conducted at 7, 14 and 28 days. The finding shows that addition of unground palm oil fuel ash up to 8% does not have significant effect on concrete workability. In terms of compressive strength, inclusion of 6% unground palm oil fuel ash increases the strength of concrete by approximately 13%.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2078
Author(s):  
Shazim Ali Memon ◽  
Usman Javed ◽  
Muhammad Haris ◽  
Rao Arsalan Khushnood ◽  
Jong Kim

The depletion of natural sand resources occurs due to excessive consumption of aggregate for concrete production. Continuous extraction of sand from riverbeds permanently depletes fine aggregate resources. At the same time, a major ecological challenge is the disposal of agricultural waste ash from biomass burning. In this study, an environmental friendly solution is proposed to investigate the incorporation of wheat straw ash (WSA) by replacing 0, 5, 10, 15, and 20% of sand in concrete. Characterization results of WSA revealed that it was well-graded, free from organic impurities, and characterized by perforated and highly porous tubules attributed to its porous morphology. A decrease in fresh concrete density and an increase in slump values were attained by an increase in WSA replacement percentage. An increasing trend in compressive strength, hardened concrete density, and ultrasonic pulse velocity was observed, while a decrease was noticed in the values of water absorption with the increase in WSA replacement percentages and the curing age. The WSA incorporation at all replacement percentages yielded concrete compressive strength values over 21 MPa, which complies with the minimum strength requirement of structural concrete as specified in ACI 318-19. Acid resistance of WSA incorporated concrete improved due to the formation of pozzolanic hydrates as evident in Chappelle activity and thermogravimetric analysis (TGA) results of WSA modified composites. Thus, the incorporation of WSA provides an environmentally friendly solution for its disposal. It helps in conserving natural aggregate resources by providing a suitable alternative to fine aggregate for the construction industry.


2021 ◽  
Vol 4 (1) ◽  
pp. 32-49
Author(s):  
Mohammed KHATTAB ◽  
Samya HACHEMI ◽  
Mohammad Fawzi Al Ajlouni

 The amount of construction and demolition waste continues to increase year by year.These wastes have a significant harmful influence on the environment; refractory brick is among of these wastes. this paper concerns the reuse of refractory brick wastes to produce an eco-friendly concrete. To achieve this objective,coarse and fine Natural Aggregates (NA) were partially replaced with recycled Refractory Brick Aggregates (RBA). According to the design of experiment, two families of mixes were prepared and tested: the first mixes was made with coarse and fine NA (as reference concrete) and the second mixes made by replacing 20% of coarse and fine NA by coarse and fine RBA. For each of the mentioned families, three cement dosages of 350 kg/m3 , 400 kg/m3 , 450 kg/m3 were investigated. A series of experiments including water porosity, density, Ultrasonic Pulse Velocity (UPV) and compressive strength were assessed. Observed results indicate that the use of coarse and fine RBA had a relatively influence on the water porosity and UPV of concrete. However, the use of coarse and fine RBA produces a slightly decreased the density of concrete (below 2%). Moreover, the use of coarse and fine RBA in concrete improved the compressive strength. Hence, coarse and fine RBA can be successfully used to produce concrete with acceptable properties.


2021 ◽  
Vol 13 (8) ◽  
pp. 4245
Author(s):  
Katarzyna Gabryś ◽  
Emil Soból ◽  
Wojciech Sas

The construction sector is currently struggling with the reuse of waste originating from the demolition and modernization of buildings and roads. Furthermore, old buildings are gradually being replaced by new structures. This brings a significant increase of concrete debris to waste landfills. To prevent this, many studies on the possibilities of recycling concrete, known as recycled concrete aggregate (RCA), have been done. To broaden the applicability of reused concrete, an understanding of its properties and engineering behavior is required. A difficulty in sustainable, proper management of RCA is the shortage of appropriate test results necessary to assess its utility. For this reason, in the present study, the physical, deformation, and stiffness properties of RCA with gravely grain distribution were analyzed carefully in the geotechnical laboratory. To examine the mentioned properties, an extensive experimental program was planned, which included the following studies: granulometric analysis, Proctor and oedometer tests, as well as resonant column tests. The obtained research results show that RCA has lower values of deformation and stiffness parameters than natural aggregates. However, after applying in oedometer apparatus repetitive cycles of loading/unloading/reloading, some significant improvement in the values of the parameters studied was noticed, most likely due to susceptibility to static compaction. Moreover, some critical reduction in the range of linear response of RCA to dynamic loading was observed.


2014 ◽  
Vol 894 ◽  
pp. 45-49 ◽  
Author(s):  
Luisa Pani ◽  
Lorena Francesconi

In this paper an experimental program has been carried out in order to compare compressive strength fcand elastic static modulus Ecof recycled concrete with ultrasonic waves velocity Vp, to establish the possibility of employing nondestructive ultrasonic tests to qualify recycled concrete. 9 mix of concrete with different substitution percentage of recycled aggregates instead of natural ones and 27 cylindrical samples have been made. At first ultrasonic tests have been carried out on cylindrical samples, later elastic static modulus Ecand compressive strength fchave been experimentally evaluated. The dynamic elastic modulus Edhas been determined in function of ultrasonic wave velocity Vp; furthermore the correlations among Ed, Ec, fce Vphave been determined. It has been demonstrated that ultrasonic tests are suitable for evaluating different deformative and resisting concrete performances even when variations are small.


2013 ◽  
Vol 357-360 ◽  
pp. 1082-1085 ◽  
Author(s):  
Kamarul Aini Mohd Sari ◽  
Sohif Mat ◽  
Khairiah Haji Badri ◽  
Muhammad Fauzi Mohd Zain

An experimental program was performed to obtain the density, compressive strength, and thermal conductivity of palm-based lightweight concrete. Palm-based polyurethane (PU) particles were used as lightweight aggregates in creating concrete systems. Concrete systems contain palm kernel oil-based polyol (PKO-p) reacted with 2,4-methylene diphenyl diisocyanate (MDI). In this study, polymer concrete was improved to achieve the optimum level of PU with the lowest possible density. The PU particles in the concrete mixture comprised of 1% to 5% w/w with density of less than 1800 kg/m3. The PU particles were 5 mm in size. The ratio of PKO-p to MDI was set at 1:1 and the loading of the concrete mixture was set at 3% w/w to produce lightweight concrete. The resulting concrete has excellent compressive strength (17.5 MPa) and thermal conductivity (0.24 W/mK). Results show that the PU particle dosage has the most significant effect on the physical and mechanical properties of concrete.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Mingyang Chen ◽  
Wenzhong Zheng

To optimize the main components of reactive powder concrete (RPC) for various curing methods, based on the fluidity and compressive strength, an inclusive experimental research is conducted on 58 different mixture ratios. The results indicate that owing to the increase of the cement strength, the RPC fluidity decreases and the cement strength is not proportional to the compressive strength. The addition of the fly ash and the nano-microbead is an effective way to improve the fluidity, and it is required at the low W/B ratio. However, the influence of the SF grade on the strength and fluidity is almost negligible. By considering the fluidity, strength, and economy of RPC as crucial design factors, SF90 is suggested. The contribution of the steel fiber to the compressive strength cannot be ignored. The upper envelope value of the steel fibers is required for the structure to resist appropriately against the fire. According to the test results, the mixture ratio formula is proposed through considering the characters of different compositions and curing methods. The strength coefficient k1 is introduced to verify the influence of the steel fiber content, and the parameters fb, αa, and αb in the formula are reevaluated. A reasonably good agreement between the calculated strength and those obtained from the tests is reported, except for the case of W/B = 0.16 with P.O.52.5 cement. The basic steps for preparations of different RPC strengths are given, which provide a valuable reference to choose appropriate raw materials and mixture ratio design for different strength values.


Sign in / Sign up

Export Citation Format

Share Document