scholarly journals Palladium Nanoparticles Fabricated by Green Chemistry: Promising Chemotherapeutic, Antioxidant and Antimicrobial Agents

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3661 ◽  
Author(s):  
Sherif Fahmy ◽  
Eduard Preis ◽  
Udo Bakowsky ◽  
Hassan Mohamed Azzazy

Palladium nanoparticles (Pd NPs) showed great potential in biomedical applications because of their unique physicochemical properties. Various conventional physical and chemical methods have been used for the synthesis of Pd NPs. However, these methods include the use of hazardous reagents and reaction conditions, which may be toxic to health and to the environment. Thus, eco-friendly, rapid, and economic approaches for the synthesis of Pd NPs have been developed. Bacteria, fungi, yeast, seaweeds, plants, and plant extracts were used to prepare Pd NPs. This review highlights the most recent studies for the biosynthesis of Pd NPs, factors controlling their synthesis, and their potential biomedical applications.

The usage of various plant extracts for green synthesis of magnetite nanoparticles, these plant extracts gaining importance day today when compared to the physical and chemical methods of synthesis due to its various advantages such as low cost, biocompatible, biodegradable, non-toxic. They also act as both reducing and capping agents during the synthesis of nanoparticles and this association achieved various pharmaceutical, and other biomedical applications. this study investigates the Plant mediated green synthesized Magnetite Nanoparticles (Fe3O4 NPs) for Antioxidant, antibacterial, Anticancer activities


2016 ◽  
Vol 20 (17) ◽  
pp. 1797-1812 ◽  
Author(s):  
Xiaoyue Yu ◽  
Cuie Tang ◽  
Shanbai Xiong ◽  
Qijuan Yuan ◽  
Zhipeng Gu ◽  
...  

Author(s):  
Geetanjali Singh ◽  
Pramod Kumar Sharma ◽  
Rishabha Malviya

Aim/Objective: The author writes the manuscript by reviewing the literatures related to the biomedical application of metallic nanoparticles. The term metal nanoparticles are used to describe the nanosized metals with the dimension within the size range of 1-100 nm. Methods: The preparation of metallic nanoparticles and their application is an influential area for research. Among various physical and chemical methods (viz. chemical reduction, thermal decomposition, etc.) for synthesizing silver nanoparticles, biological methods have been suggested as possible eco-friendly alternatives. The synthesis of metallic nanoparticles is having many problems inclusive of solvent toxicity, the formation of hazardous byproducts and consumption of energy. So it is important to design eco-friendly benign procedures for the synthesis of metallic nanoparticles. Results: From the literature survey, we concluded that metallic nanoparticles have applications in the treatment of different diseases. Metallic nanoparticles are having a great advantage in the detection of cancer, diagnosis, and therapy. And it can also have properties such as antifungal, antibacterial, anti-inflammatory, antiviral and anti-angiogenic. Conclusion: In this review, recent upcoming advancement of biomedical application of nanotechnology and their future challenges has been discussed.


Author(s):  
LATIF MS ◽  
ABBAS S ◽  
KORMIN F ◽  
MUSTAFA MK

The use of metal nanoparticles (MNPs) in various fields is increasing day-by-day leading to a genuine concern about the issues related to their environmental and biological safety. The major approaches for the synthesis of NPs include physical and chemical methods which are expensive and hazardous to health in addition to being toxic to the environment. This review highlights the potential of plant extracts to carry out the synthesis of MNPs with a special emphasis on the role of flavonoids in nanosynthesis. This green and clean approach have been actively utilized in recent years as an alternative to conventional hazardous approaches. It has proved as cost-effective, non-toxic, less time and labor consuming, efficient, and eco-friendly method for the synthesis of MNPs with specific biological actions. This review also focuses on the role of polyphenols, including the flavonoids as bioreductants of metal salts for the synthesis of NPs along with their biomedical applications. Various examples of the MNPs, along with their biological actions, have also been summarized.


2019 ◽  
Vol 25 (24) ◽  
pp. 2650-2660 ◽  
Author(s):  
Rajasree Shanmuganathan ◽  
Indira Karuppusamy ◽  
Muthupandian Saravanan ◽  
Harshiny Muthukumar ◽  
Kumar Ponnuchamy ◽  
...  

Generally, silver is considered as a noble metal used for treating burn wound infections, open wounds and cuts. However, the emerging nanotechnology has made a remarkable impact by converting metallic silver into silver nanoparticles (AgNPs) for better applications. The advancement in technology has improved the synthesis of NPs using biological method instead of physical and chemical methods. Nonetheless, synthesizing AgNPs using biological sources is ecofriendly and cost effective. Till date, AgNPs are widely used as antibacterial agents; therefore, a novel idea is needed for the successful use of AgNPs as therapeutic agents to uncertain diseases and infections. In biomedicine, AgNPs possess significant advantages due to their physical and chemical versatility. Indeed, the toxicity concerns regarding AgNPs have created the need for non-toxic and ecofriendly approaches to produce AgNPs. The applications of AgNPs in nanogels, nanosolutions, silver based dressings and coating over medical devices are under progress. Still, an improvised version of AgNPs for extended applications in an ecofriendly manner is the need of the hour. Therefore, the present review emphasizes the synthesis methods, modes of action under dissipative conditions and the various biomedical applications of AgNPs in detail.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rohit Rattan ◽  
Sudeep Shukla ◽  
Bharti Sharma ◽  
Mamta Bhat

Biological entities such as green plants, fungi, and lichens are now a days persistently explored for the synthesis of nanoparticles. Lichen-based nanoparticles are also becoming increasingly popular owing to their biocompatibility, eco-friendliness, and cost-effectiveness. The lichen-based metal nanomaterials, particularly synthesized using green chemistry approaches, have turned out to be great substitutes to conventional antimicrobial therapies. Many scientific reports established the significant antimicrobial properties exhibited by the lichen nanoparticles. Therefore, the present mini-review summarizes an overview of lichen-based nanomaterials, their synthesis, their applications, and the molecular mechanism of their potential as broad spectrum antimicrobial agents for biomedical applications.


2011 ◽  
Vol 396-398 ◽  
pp. 1506-1512
Author(s):  
Yu Jia Cui ◽  
Wei Guo Wang ◽  
Peng Li ◽  
Yong Liang Zhao ◽  
Ya Nan Gu ◽  
...  

Abstract:PurposeThe physicochemical properties of four Cross-linked sodium hyaluronate gels(CHA) with different cross-linking agents were conpared.In order to research out the different stability and Enzyme-resistant properties of these CHA.Methods The CHA hydrogels were prepared with different cross-linking agents, such as PEG20000, PDE, BDDE and ADH. The optimal reaction conditions were determined by single factor experiment. Dynamic viscosity was tested by Stabinger method. Intrinsic viscosity was tested by Uzziah's viscosity method. The in vitro Enzyme-resistant properties of CHA-gels were analysed by carbazole and spectrophotometry. Results The concentrations of NaOH/HCl, concentrations of HA and the ratio of cross-linking agent to HA were significant conditions which influenced the physicochemical properties of CHA gels. PDE-CHA and PEG20000 gels have best Dynamic viscosity, PDE-CHA gel has best Intrinsic viscosity, ADH-CHA and BDDE-CHA gels have better Enzyme-resistant properties than PEG20000-CHA and PDE-CHA gels.Conclusion The CHA-gel prepared under optimal reaction conditions have different physical and chemical properties, which set foundation for developing double cross-linked gel with both excellent stability and Enzyme-resistant properties.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 997
Author(s):  
Chiara Allegretti ◽  
Francesca Denuccio ◽  
Letizia Rossato ◽  
Paola D’Arrigo

This review describes the use of phospholipase D (PLD) to perform the transphosphatidylation of the most common natural phospholipid (PL), phosphatidylcholine (PC) to obtain polar head modified phospholipids with real targeted applications. The introduction of different polar heads with distinctive physical and chemical properties such as charge, polarity and dimensions allows the obtainment of very different PLs, which can be exploited in very diverse fields of application. Moreover, the inclusions of a bioactive moiety in the PL polar head constitutes a powerful tool for the stabilization and administration of active ingredients. The use of this biocatalytic approach allows the preparation of compounds which cannot be easily obtained by classical chemical methods, by using mild and green reaction conditions. PLD is a very versatile enzyme, able to catalyze both the hydrolysis of PC to choline and phosphatidic acid (PA), and the transphosphatidylation reaction in the presence of an appropriate alcohol. The yield of production of the desired product and the ratio with the collateral PA formation is highly dependent on parameters such as the nature and concentration of the alcohol and the enzymatic source. The application of PLD catalyzed transformations for the production of a great number of PLs with important uses in medical, nutraceutical and cosmetic sectors will be discussed in this work.


Author(s):  
Angela SPOIALA ◽  
Denisa FICAI ◽  
Anton FICAI ◽  
Luminita CRACIUN ◽  
Aurel Mihail TITU ◽  
...  

This paper aims to review the challenges, toxicity, and routes of synthesis and usage of silver nanoparticles in different applications but also highlighting their sustainability from both medical and environmental issues. Regarding their toxicity, it is known that silver nanoparticles can destroy over 650 microorganisms comparing with antibiotics. Supplementary, will be presented in a comparative manner some conventional synthesis routes (physical and chemical methods) and green synthesis routes using plant extracts. The approach using plant extracts have various advantages comparing with physical, chemical and microbial synthesis methods because there is no need to use chemicals, wasteful purifications and high energy requirements. The paper presents an overview on “green nanotechnology” focused on using either biological micro-organisms or plant extracts as an alternative to the classical chemical and physical methods. An important issue discussed in the paper is an overview of the synthesis routes of silver nanoparticles, some expected applications of silver based active agents and their toxicity and challenges that must be overcome. Also, it needs to focus our attention on the dismissal of silver nanoparticles into the environment and especially in water systems, fact which suggests that this issue must be fully understood and applied the law.


Author(s):  
N.B. Singh ◽  
Preeti Jain ◽  
Anindita De ◽  
Richa Tomar

: It is an age of nanomaterials. Nanotechnology has revolutionized the scientific world. Every sphere of technology has benefited a lot by using nanomaterials. Number of physical and chemical methods is being used for the synthesis of nanomaterials. In recent years much emphasis is given for green synthesis particularly by using plant extracts or microorganism. This is useful for promoting environmental sustainability. Microwave heating and ultrasound techniques are also being used for the synthesis of different type of nanomaterials. Green synthesis is an advance method of synthesizing nanomaterials over other methods because of simplicity, lower cost and relatively reproducible. Plants produce more stable nanoparticles compared to other means and it is very straightforward to scale up. The risk of contamination is also lower. In this article different method of green synthesis of nanomaterials, and applications have been reviewed and discussed.


Sign in / Sign up

Export Citation Format

Share Document