scholarly journals The Usefulness of Pine Timber (Pinus sylvestris L.) for the Production of Structural Elements. Part I: Evaluation of the Quality of the Pine Timber in the Bending Test

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3957 ◽  
Author(s):  
Radosław Mirski ◽  
Dorota Dziurka ◽  
Monika Chuda-Kowalska ◽  
Marek Wieruszewski ◽  
Jakub Kawalerczyk ◽  
...  

The study assessed the quality of pine lumber by marking the modulus of elasticity in the horizontal system. The research material was a plank with the following dimensions: 137 mm wide × 39.50 mm thick × 3485 mm long. The pine wood was obtained by sawing timber in the form of logs with round cross sections and originating from the Forest Division Olesno (50°52′30″ N, 18°25′00″ E). Each long log was sawn to provide four logs of about 3.5 m, which were marked as butt-end logs (O), middle logs (S)—2 items, and top logs (W). The origin of the logs from the trunk (Pinus sylvestris L.) has a significant impact on the physical and mechanical properties of the wood from which they are made. Only butt-end logs (log type O) allows for the production of high-quality timber elements. The pine timber that was evaluated in this paper had a high density of about 570 kg/m3 and a high percentage of timber items were assigned to class C24 and higher (above 50%). The adopted horizontal model of evaluation of the modulus of elasticity gave similar results to those obtained in an evaluation according to the EN-408.

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4029
Author(s):  
Radosław Mirski ◽  
Dorota Dziurka ◽  
Monika Chuda-Kowalska ◽  
Jakub Kawalerczyk ◽  
Marcin Kuliński ◽  
...  

The paper assessed the feasibility of manufacturing glued structural elements made of pine wood after grading it mechanically in a horizontal arrangement. It was assumed that the pine wood was not free of defects and that the outer lamellas would also be visually inspected. This would result in only rejecting items with large, rotten knots. Beams of the assumed grades GL32c, GL28c and GL24c were made of the examined pine wood. Our study indicated that the expected modulus of elasticity in bending was largely maintained by the designed beam models but that their strength was connected with the quality of the respective lamellas, rather than with their modulus of elasticity. On average, the bending strength of the beams was 44.6 MPa. The cause of their destruction was the individual technical quality of a given item of timber, which was loosely related to its modulus of elasticity, assessed in a bending test. Although the modulus of elasticity of the manufactured beam types differed quite significantly (11.45–14.08 kN/mm2), the bending strength for all types was similar. Significant differences occurred only during a more detailed analysis because lower classes were characterized by a greater variation of the bending strength. In this case, beams with a strength of 24 MPa to 50 MPa appeared.


Author(s):  
Л.Д. Бухтояров ◽  
И.В. Григорьев ◽  
О.А. Куницкая ◽  
А.Е. Лукин ◽  
Д.Е. Куницкая

Из древесины производится около 20 тысяч наименований продукции, причем около 95% приходится на продукцию химической и механо-химической переработки древесины. Большая часть таких производств в качестве сырья потребляет технологическую щепу, к которой предъявляются требования по наличию в ней коры, гнилей и минеральных включений. Наиболее трудо- и энергоемкой операцией технологического процесса по производству технологической щепы является окорка балансовой древесины, которая в подавляющем большинстве случаев производится методом групповой окорки в окорочных барабанах различной конструкции. В статье представлена математическая модель процесса групповой окорки лесоматериалов в окорочных барабанах, позволяющая оценивать один из основных параметров групповой окорки лесоматериалов – время их обработки, при котором будут минимизированы потери древесины без снижения качества окорки, с учетом конструктивных элементов барабана, параметров балансов, их свойств и температуры. Учтен вероятностный характер таких показателей, как время окорки, физико-механические свойства коры и древесины, особенности распределения слоев коры по глубине, что обусловило необходимость применения математической модели, основанной на принципах ситуационного моделирования процессов перехода лесоматериала из одного состояния в другое. Методика расчета и управления основными параметрами процесса позволяет разрабатывать организационные, технологические и технические мероприятия, обеспечивающие стабильность качественных показателей групповой окорки лесоматериалов в окорочных барабанах. Также модель представлена в виде функциональной блок-схемы, основанной на графическом интерфейсе Matlab с приложением Simulink. Используя наборы блоков Simulink, отвечающих за константы, переменные, функции, и вычислительные операции, организован процесс расчета основных параметров объектно-ориентированным ме­тодом. Wood is produced about 20 thousand kinds of products, with about 95% products of the chemical and mechano-chemical processing of wood. Most of these industries as raw material consumes wood chips, which are requirements for the presence of bark, rot and mineral inclusions. Most labor and energy intensive operation of the technological process for the manufacturing of wood chips is the debarking of pulpwood, which in the vast majority of cases, produced by a group of debarking in debarking drums of various designs. The article presents a mathematical model of the process of group debarking wood in debarking drums allows one to assess one of the key parameter group of debarking wood – processing times, which will be minimized wood losses without reducing the quality of the debarking, taking into account the structural elements of the drum, the balance parameters, their properties and temperature. Account the probabilistic nature of such indicators as: debarking, physical and mechanical properties of bark and wood, the distribution of layers of crust at depth, which necessitated the use of mathematical models based on the principles of situational simulation of the transition branch from one state to another. Calculation method and basic parameters of the process allows us to develop organizational, technological and technical measures ensuring the stability of quality indicators of group debarking wood in debarking drums. Also, the model presented in the form of functional block diagrams based on the graphical user interface of Matlab with Simulink application. Using the Simulink block sets of charge constants, variables, functions, and compute the organized process of calculating the basic parameters of the object-oriented method.


2016 ◽  
Vol 249 ◽  
pp. 301-306
Author(s):  
Ctislav Fiala ◽  
Jaroslav Hejl ◽  
Vlastimil Bílek ◽  
Jan Růžička ◽  
Tomáš Vlach ◽  
...  

Mechanical properties of high performance concrete (HPC) enable design of subtle structural elements. Subtle HPC frame concept comes from the effort to integrate load bearing elements into building envelope in order to reduce risks of thermal bridges. Substantial advantages of subtle structural elements are material and energy savings during production, transportation, manipulation and assembling. Paper presents preparation and implementation of construction of experimental frame at University Centre UCEEB in Buštěhrad. Individual structural elements were made in prefa plant ŽPSV a.s. in Litice nad Orlicí. Construction of frame prototype is the result of long term research when the vertical and horizontal structural elements and their connections were successively designed and experimentally verified. This article shows experimental results of horizontal load bearing structures - floor panels and beams - in detail. Samples were tested by four-point bending test and also creep of floor panels was measured. Accomplished calculations, experimental verification and analysis have showed that subtle HPC frame is the effective solution from reliability aspects as well as from environmental and economical parameters. Minimal columns cross sections enable their complete implementation into building envelope and they also contribute to high quality architectonic solution of buildings interiors.


Wood Research ◽  
2021 ◽  
Vol 66 (2) ◽  
pp. 231-242
Author(s):  
Sławomir Krzosek ◽  
Marek Grześkiewicz ◽  
Izabela Burawska Kupniewska ◽  
Piotr Mańkowski ◽  
Marek Wieruszewski

The research consisted in testing Polish sawn timber dedicated for construction applications made of pines (Pinus sylvestris L.) that grew in the Silesian Forestry Region, taking into account three parts of the log: butt, middle and top. The boards had the same cross section, a nominal thickness of 40 mm and width of 138 mm, typical for Polish structural timber. The mean nominal length of the boards under research amounted to 3500 mm. Each set was composed of 70 boards. Before the tests, boards were dried in an industrial drier until reaching the moisture content of 12%, and they were planed on 4 sides. First of all, the sawn timber was graded into strength classes, and their dynamic modulus of elasticity (MOE_dyn) was tested with a non-destructive method, with the use of a portable MTG device. The next step consisted in a bending test with four points of support, according to the EN 408 standard, and with the use of the TiraTest 2300 machine, in order to determine the global modulus of elasticity (MOE_EN-408) and the static bending strength, also referred to as modulus of rupture (MOR). Finally, the average growth ring width was determined for each board (PN-D-94021), as well as wood density according to EN-408. The hereby paper presents the test results for all the tested sawn timber boards, taking into account the part of log that each board came from: butt, middle or top. The hereby paper presents the influence of density on the mechanical properties of wood, taking into account the location on the round timber. The analysis does not include the influence of the width of annual growth rings and the proportion of latewood on the wood properties under research.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1017
Author(s):  
Izabela Burawska-Kupniewska ◽  
Paweł Mycka ◽  
Piotr Beer

The article concerns the quality issues in wood industry, and especially the advisability of removing defects from veneers. The research purpose of the study was to analyse the influence of the layered structure of plywood base layer made of low-quality wood on selected mechanical properties of floor composites. The utilitarian purpose is to analyse the possibility of producing floors from low-quality materials reducing waste. Four quality classes of Scots pine veneers (Pinus sylvestris L.) were taken into account: A, B, C, D, from the highest class-A without defects to the lowest class-D characterized by a lot of knots (including broken and falling out ones) and cracks. The base layer of the floors was made of these wood quality classes. The value of the modulus of elasticity in elastic deformation, modulus of elasticity in the dynamic and fatigue tests, stiffness and static bending strength were investigated. The test results showed that, as expected, the samples made of class A had the highest values of the measured parameters (static bending strength, static and dynamic modulus of elasticity, and stiffness). However, the values of the tested parameters for the remaining classes B, C, and D did not significantly differ. It was concluded from the research that the change of the plywood base layer conditions regarding the quality of veneers does not significantly affect the physical and mechanical properties of composites. Hence, it is possible to use wood of lower quality classes for production without verification of which class they belong to, which will significantly reduce the production costs.


2016 ◽  
Vol 8 (15) ◽  
pp. 47-54
Author(s):  
Haspiadi Haspiadi

The purpose of this research is to know the influence of pressure and use of conplast against mechanical properties which are a Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) of plasterboard. The study is done because still low quality of plasterboard made from a mixture of ashes of oil-palm shell especially of the mechanical properties compared to the controls. The method of this reserach used variation of printed pressure and the addition of conplast. Test result is obtained that the highest value of Modulus of Elasticity (MOE) 90875.94 Kg/cm2, Modulus of Rupture (MOR) 61.16 Kg/cm2 and density values in generally good printed at the pressure 60 g/cm3 and the addition of conplast 25% as well as the composition of the ash of palm shell oil 40%: limestone 40%: cement 15%: fiber 5% and 300 mL of water. ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh tekanan dan penggunaan conplast terhadap sifat mekanik yaitu kuat lentur dan keteguhan patah eternit berbahan dasar abu cangkang sawit. Penelitian ini dilakukan karena masi rendahnya mutu eternit berbahan campuran abu cangkang sawit dari bolier khususnya sifat mekanik dibandingkan dengan kontrol. Metode penelitian yang digunakan adalah dengan variasi tekanan cetak dan penambahan conplast. Hasil uji diperoleh bahwa kuat lentur tertinggi sebesar 90875,94 Kg/cm2 dan keteguhan patah sebesar 61,16 Kg/cm2, yang dicetak pada tekanan 60 g/cm3 dan penambahan conplast 25% dengan komposisi  abu cangkang sawit 40 %: kapur 40 % : semen 15 %: serat 5 % dan air 300 mL.Kata Kunci :  Abu cangkang sawit, conplast, kuat lentur, keteguhan patah.


Akustika ◽  
2020 ◽  
pp. 45-50
Author(s):  
Alena Rohanová

This paper explores the analysis of sound speeds in the longitudinal direction and their reduction to the reference moisture content w = 12 %. The sound speed cw was determined with Sylvatest Duo device. Moisture content of beech sawmill assortments (round timber: N = 16, logs: N = 2 × 16, structural boards: N = 54) in the range of 12 – 72 % was measured. For the analysis purposes, the sound speed was converted to reference conditions (c12, uref = 12%). A second-degree polynomial (parabola) with a regression equation of the form: c// = 5649 - 27,371 × w + 0.0735 × w2 was used to convert cw to c12, and correction of measured and calculated values was used as well. The sound speeds c12 in sawmill assortments (c12,round, c12,log, c12,board) were evaluated by linear dependences. Dependence was not confirmed for c12,round and c12,board1 (r = 0.168), in contrast for c12,round and c12,log2 the dependence is statistically very significant (r = 0.634). The results of testing showed that the most suitable procedure for predicting quality of structural timber is the first step round timber – log2, the second step: log2 - board2. More exact results of the construction boards were obtained from log2 than from log1. The sound speed is used in the calculation of dynamic modulus of elasticity (Edyn). EN 408 mentions the possibility of using dynamic modulus of elasticity as an alternative method in predicting the quality of structural timber.


1993 ◽  
Vol 58 ◽  
Author(s):  
D. Maddelein ◽  
J. Neirynck ◽  
G. Sioen

Mature  Scots pine (Pinus sylvestris  L.) stands are dominating large parts of the Flemish forest area. Broadleaved  species regenerate spontaneously under this pine canopy. This study studied  the growth and development of two planted pine stands with an older natural  regeneration, dominated by pedunculate oak (Quercus  robur L.), and discussed management options for  similar stands.     The results indicated a rather good growth of the stands, with current  annual increments of 5 m3.ha-1.yr-1. The pine overstorey is growing into valuable sawwood  dimensions, while the broadleaved understorey slowly grows into the  upperstorey. The quality of the regeneration is moderate but can be improved  by silvicultural measurements (pruning, early selection).     In both stands, an interesting (timber production, nature conservation)  admixture of secondary tree species is present in the regeneration. Stand  management is evolving from the classical clearcut system towards a  combination of a type of selection and group selection system.


2021 ◽  
Vol 11 (4) ◽  
pp. 1748
Author(s):  
Giovanna Concu

Timber buildings are experiencing a rapid diffusion due to their good performance and their sustainability; however, some steps of structural timber production process, such as drying, are energy-intensive and environmentally impactful, and many wood species are also affected by low yield. Therefore, it would be important to determine the quality of the green material, that is, in wet condition, before undergoing the most impactful and expensive production steps. This paper describes a research aimed at quantifying the variation of the dynamic modulus of elasticity MoEdyn, which is commonly used for structural timber mechanical grading, from wet to dry condition in Sardinian maritime pine boards to be used for the production of laminated timber, and to examine the relationship between wet and dry MoEdyn. The MoEdyn was determined from measurements of the velocity of sonic waves propagating through the boards. The results show that the dry MoEdyn can be estimated starting from boards sonic testing in the wet condition, so providing a basis for implementing Sardinian maritime pine pre-grading in order to obtain the reduction of manufacturing costs, the abatement of environmental impact, and the increase of structural grade yield.


2020 ◽  
Vol 66 (1) ◽  
Author(s):  
Murzabyek Sarkhad ◽  
Futoshi Ishiguri ◽  
Ikumi Nezu ◽  
Bayasaa Tumenjargal ◽  
Yusuke Takahashi ◽  
...  

Abstract The quality of dimension lumber (2 by 4 lumber) was preliminarily investigated in four common Mongolian softwoods: Pinus sylvestris L., Pinus sibirica Du Tour, Picea obovata Ledeb., and Larix sibirica Ledeb. to produce high quality dimension lumber for structural use. In total 61, 39, 67, and 37 pieces of lumber were prepared for Pinus sylvestris, Pinus sibirica, Picea obovata, and L. sibirica, respectively. The lumber was visually graded and then tested in static bending to obtain the 5% lower tolerance limits at 75% confidence level (f0.05) of the modulus of elasticity (MOE) and the modulus of rupture (MOR). In addition, the effects of sawing patterns on bending properties were also analyzed. The f0.05 of the MOE and MOR were 4.75 GPa and 15.6 MPa, 3.39 GPa and 11.0 MPa, 3.78 GPa and 11.7 MPa, and 6.07 GPa and 22.3 MPa for Pinus sylvestris, Pinus sibirica, Picea obovata, and L. sibirica, respectively. These results suggested that with a few exceptions, characteristic values of MOR in the four common Mongolian softwoods resembled those in similar commercial species already used. In visual grading, over 80% of total lumber was assigned to select structural and No. 1 grades in Pinus sylvestris and Pinus sibirica, whereas approximately 40% of total lumber in L. sibirica was No. 3 and out of grades. Sawing patterns affected bending properties in Pinus sylvestris and L. sibirica, but did not affect Pinus sibirica and Picea obovata. Dynamic Young's modulus was significantly correlated with bending properties of dimension lumber for the four species. Based on the results, it was concluded that dimension lumber for structural use can be produced from the four common Mongolian softwoods.


Sign in / Sign up

Export Citation Format

Share Document