scholarly journals Effects of Portland Cement and Polymer Powder on the Properties of Cement-Bound Road Base Mixtures

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4253
Author(s):  
Przemysław Buczyński ◽  
Marek Iwański ◽  
Grzegorz Mazurek ◽  
Jakub Krasowski ◽  
Maciej Krasowski

This article presents the test results for the physical and mechanical properties and fracture toughness of polymer-modified hydraulically-bound mixtures (HBM) produced with Portland cement for road base layers. The modifier used was a redispersible polymer powder (RPP) based on a vinyl ethylene acetate (EVA) copolymer obtained by spray drying. A three-level full factorial design with two factors was applied to determine the contents of Portland cement and polymer powder in the cement-bound mixture (CBM). Both Portland cement and polymer powder were added at three levels: 0%, 2%, and 4%. The assessment included basic physical properties (water absorption, density, and bulk density) and mechanical properties (stiffness modulus, axial compressive strength, and indirect tensile strength) of the CBM. Particular attention was paid to the assessment of fracture toughness in the semi-circular bending test. The results of the research show that polymer powder positively influenced the mechanical properties of CBM by improving its cohesion while maintaining its stiffness. Another benefit coming from the use of polymer powder was the CBM’s increased resistance to cracking, which is the desired characteristic from the perspective of pavement durability.

2016 ◽  
Vol 11 (4) ◽  
pp. 291-301 ◽  
Author(s):  
Marek Iwański ◽  
Anna Chomicz-Kowalska

This paper presents findings of a study concerning the influence of binder type on the mechanical properties of road base in the cold recycling technology. The principal aim of this investigation was to evaluate the mixes in scope of susceptibility to moisture and low-temperatures. In the comparative research foamed bitumen and bitumen emulsion were used in four different concentrations (2.0%, 2.5%, 3.0%, 3.5%). The materials used in the study were reclaimed from an existing road construction layers: reclaimed aggregate from the road base and reclaimed asphalt pavement obtained by milling the surface and binder course. Portland cement in 2.0% concentration was used as a hydraulic binder. The evaluated parameters were: indirect tensile strengths, tensile strength retained and indirect tensile stiffness modulus at 25 °C. These tests were complemented by an evaluation of susceptibility to moisture and frost according to modified procedures implemented by American researchers: Tunnicliff, Root and Lottman. Moreover, tests for low-temperature cracking were conducted according to Finnish standard. The investigations showed that the use of foamed bitumen for road base layer produced in the cold recycling technology results in better mechanical properties and resistance to moisture and frost compared to using bitumen emulsion. The use of 2.5% of foamed bitumen and 2.0% of Portland cement in the recycled road base allowed to meet the established criteria.


2008 ◽  
Vol 591-593 ◽  
pp. 436-440
Author(s):  
João Marcos K. Assis ◽  
Francisco Piorino Neto ◽  
Francisco Cristóvão Lourenço de Melo ◽  
Maria do Carmo de Andrade Nono

A comparative study between alumina added niobia ceramics and two alumina zirconia composites from nanostructured TZP (7% and 14% weight) was made. On this composites the zirconia were yttria stabilized and the alumina were submicron structured. As sintering aid a mixture of magnesia, niobia and talc were used on all samples. The sintering was performed at 1450 oC during 60 minutes. The characteristic grain size and shape of an alumina and zirconia powders, aggregates and agglomerates were characterized. The sintering ceramics were evaluated through hardness, fracture toughness and 4 point bending test. Weibull statistic was applied on the flexural results. Although the fracture toughness result from ZTA were lower, and seems to be affected by the liquid fase, the hardness and Weibull modulus were higher than alumina niobia. The grains size and the homogeneity of its distributions on the microstructure of this ceramics was correlated to these higher values. The results from these alumina zirconia composites showed a potential to apply as a ballistic armor material.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
In-Jin Shon ◽  
In-Yong Ko ◽  
Seung-Hoon Jo ◽  
Jung-Mann Doh ◽  
Jin-Kook Yoon ◽  
...  

Nanopowders of 3NiAl and Al2O3were synthesized from 3NiO and 5Al powders by high-energy ball milling. Nanocrystalline Al2O3reinforced composite was consolidated by high-frequency induction-heated sintering within 3 minutes from mechanochemically synthesized powders of Al2O3and 3NiAl. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. The relative density of the composite was 97%. The average Vickers hardness and fracture toughness values obtained were 804 kg/mm2and 7.5 MPa⋅m1/2, respectively.


2016 ◽  
Vol 677 ◽  
pp. 186-190 ◽  
Author(s):  
Monika Čáchová ◽  
Eva Vejmelková ◽  
Kateřina Šestáková ◽  
Pavel Reiterman ◽  
Martin Keppert ◽  
...  

This article is focused on cement based composites. Two cements differing in mineralogical composition are utilised as main binder in composites mixtures. Results of measured physical parameters of studied materials are presented. For the sake of comparison, a reference material with Portland cement was also prepared. Basic physical properties (measured by water vacuum saturation method and by helium pycnometry), characterizations of pore system (determined by mercury porosimetry) and mechanical properties are the matter of this study. Composites show various open porosity; the results of open porosity of materials containing special cements show higher values, in comparison with composite based on Portland cement. This fact of course influences other material characteristics - mainly mechanical properties.


Author(s):  
V. I. Khirkhasova ◽  

The paper deals with modification of cement composite and concrete with nanocellulose in low and high density. The author presents the study results of the influence of nanocellulose on the cement composite hardening process, as well as the physical and mechanical properties of heavy concrete. The influence of the used additive on the rheological and strength characteristics of concrete is revealed. A new method is proposed to improve the material performance.


2020 ◽  
Vol 6 (11) ◽  
pp. 84929-84951
Author(s):  
Luccas Mansur Feuchard ◽  
Cléo Márcio de Araújo Santana ◽  
Eliane Fernandes Côrtes Pires ◽  
Fernando Luiz Barbuda de Abreu ◽  
Elie Chahdan Mounzer ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Ridho Pratama ◽  
M Dirhamsyah ◽  
. Nurhaida

This study aims to examine the physical and mechanical properties of gypsum board from Acacia mangium Willd wood waste based on gypsum content and wood powder size. This study refers to the JIS A 5417-1992 standard. This research were conducted at Wood Work Shop laboratory for the preparation of raw materials, Wood Technology laboratory Faculty of Forestry for board making and testing the physical properties of gypsum boards, and  PT. Duta Pertiwi Nusantara laboratory to test the mechanical properties of the gypsum board. The material used is  A. mangium W. Wood powder, gypsum flour, water and borax. The study uses Factorial Completely Randomized Design (CRD) with two factors, namely factor A (gypsum content) which consists of gypsum content of 400%, 500% and 600% of the weight of A. mangium W. wood powder, and factors B (wood powder size) consists of 20 mesh passes 40 mesh retained and 40 mesh passes 60 mesh retained. The results showed that the density (600% gypsum content of 40 and 60 mesh retained wood powder size), moisture content, thickness swelling, MOE (600% gypsum content of 40 and 60 mesh retained wood powder size) fulfill JIS A5417-1992 standard. The best gypsum board is gypsum board with gypsum content of 600% with a wood powder size is 40 mesh.Keyword: Acacia mangium, gypsum board, gypsum content, wood powder size.


2019 ◽  
Vol 09 (04) ◽  
pp. 327-337
Author(s):  
Asal Soltani ◽  
Salim Khoso ◽  
Manthar Ali Keerio ◽  
Antonio Formisano

Sign in / Sign up

Export Citation Format

Share Document