scholarly journals Semi-Empirical Prediction of Residual Stress Distributions Introduced by Turning Inconel 718 Alloy Based on Lorentz Function

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4341
Author(s):  
Huachen Peng ◽  
Penghao Dong ◽  
Xianqiang Cheng ◽  
Chen Zhang ◽  
Wencheng Tang ◽  
...  

The residual stress of machined surface has a crucial influence on the performance of parts. It results in large deviations in terms of the position accuracy, dimension accuracy and service life. The purpose of the present study is to provide a novel semi-empirical residual stress prediction approach for turning Inconel 718. In the method, the bimodal Lorentz function was originally applied to express the residual stress distribution. A statistical model between the coefficients of the bimodal Lorentz function and cutting parameters was established by the random forest regression, in order to predict the residual stress distribution along the depth direction. Finally, the turning experiments, electrolytic corrosion peeling, residual stress measurement and correlation analysis were carried out to verify the accuracy of predicted residual stress. The results show that the bimodal Lorentz function has a great fitting accuracy. The adjusted R2 (Ad-R2) are ranging from 95.4% to 99.4% and 94.7% to 99.6% in circumferential and axial directions, respectively. The maximum and minimum errors of the surface residual tensile stress (SRTS) are 124.564 MPa and 18.082 MPa, those of the peak residual compressive stress (PRCS) are 84.649 MPa and 3.009 MPa and those of the depth of the peak residual compressive stress (DPRCS) are 0.00875 mm and 0.00155 mm, comparing three key feature indicators of predicted and simulated residual stress. The predicted residual stress is highly correlated with the measured residual stress, with correlation coefficients greater than 0.8. In the range of experimental measurement error, the research in the present work provides a quite accurate method for predicting the residual stress in turning Inconel 718, and plays a vital role in controlling the machining deformation of parts.

Author(s):  
Tao Mo ◽  
Jingqing Chen ◽  
Pengju Zhang ◽  
Wenqian Bai ◽  
Xiao Mu ◽  
...  

Ultrasonic impact treatment (UIT) is an effective method that has been widely applied in welding structure to improve the fatigue properties of materials. It combines mechanical impact and ultrasonic vibration to produce plastic deformation on the weld joints surface, which introduces beneficial compressive residual stress distribution. To evaluate the effect of UIT technology on alleviating the residual stress of welded joints, a novel numerical analysis method based on the inherent strain theory is proposed to simulate the stress superposition of welding and subsequent UIT process of 304 stainless steel. Meanwhile, the experiment according to the process was carried out to verify the simulation of residual stress values before and after UIT. By the results, optimization of UIT application could effectively reduce the residual stress concentration after welding process. Residual tensile stress of welded joints after UIT is transformed into residual compressive stress. UIT formed a residual compressive stress layer with a thickness of about 0.13 mm on the plate. The numerical simulation results are consistent with the experimental results. The work in this paper could provide theoretical basis and technical support for the reasonable evaluation of the ultrasonic impact on residual stress elimination and mechanical properties improvement of welded joints.


2011 ◽  
Vol 223 ◽  
pp. 431-438 ◽  
Author(s):  
Aldo Attanasio ◽  
Elisabetta Ceretti ◽  
Cristian Cappellini ◽  
Claudio Giardini

In cutting field, residual stress distribution analysis on the workpiece is a very interesting topic. Indeed, the residual stress distribution affects fatigue life, corrosion resistance and other functional aspects of the workpiece. Recent studies showed that the development of residual stresses is influenced by the cutting parameters, tool geometry and workpiece material. For reducing the costs of experimental tests and residual stress measurement, analytical and numerical models have been developed. The aim of these models is the possibility of forecasting the residual stress distribution into the workpiece as a function of the selected process parameters. In this work the residual stress distributions obtained simulating cutting operations using a 3D FEM software and the corresponding simulation procedure are reported. In particular, orthogonal cutting operations of AISI 1045 and AISI 316L steels were performed. The FEM results were compared with the experimental residual stress distribution in order to validate the model effectiveness.


2014 ◽  
Vol 501-504 ◽  
pp. 574-577
Author(s):  
Zhuang Nan Zhang ◽  
Xin Zhao ◽  
Ya Nan Zhao

This paper used ANSYS finite element software to simulate the residual stress of the welded monosymmetric I-section and obtain residual stress distribution curves, analyzed the influence of flange width ratio on welding residual stress peak value and the stress distribution. The studies have shown that: with the flange width ratio decrease gradually, peak value of residual stress in flange and web is to increase; peak value of residual tensile stresses in both flange and web close to the steel yield strength fy, peak value of residual compressive stresses is 0.4fy in wide flange and the web near wide flange and in narrow flange and web near narrow flange is 0.3fy; the distribution of the residual tensile stress in the flange and web have growth trend.


1995 ◽  
Vol 39 ◽  
pp. 331-338
Author(s):  
Yoshihisa Sakaida ◽  
Keisuke Tanaka ◽  
Shintaro Harada

A new method of X-ray stress measurement was proposed to estimate non-destructively the steep residual stress distribution in the surface layer of ground Si3N4. We assumed an exponential decrement of the residual stress near the ground surface, and derived a formula for the lattice strain as a function of sin2Ψ. In the experiments, the diffraction angles were measured on the ground surface for a widest possible range of sin2ѱ using an Ω-goniometer. In order to measure the diffraction angle at very high sin η values, a scintillation counter was located on the -η side and an incident X-ray beam impinged on the ground surface with a very low angle from the +η side using the glancing incidence X-ray diffraction technique. A strong non-linearity was found in the 20-sin2ѱ diagrams especially at very high ѱ -angles. From the analysis of non-linearity, the stress distribution in the surface layer was determined. Tine residual stress took the maximum compression of 2 GPa at a depth of about 0.5 μm from the surface, and then diminished to zero at about 25 μm in depth. In the close vicinity of the ground surface, the compressive residual stress was relieved because of both the surface roughness and microcracking induced during the grinding process.


2019 ◽  
Vol 9 (17) ◽  
pp. 3511 ◽  
Author(s):  
Kangmei Li ◽  
Yifei Wang ◽  
Yu Cai ◽  
Jun Hu

Laser peen texturing (LPT) is a novelty way of surface texturing based on laser shock processing. One of the most important benefits of LPT is that it can not only fabricate surface textures but also induce residual compressive stress for the target material. However, the residual stress loss leads to partial loss of residual compressive stress and even causes residual tensile stress at the laser spot center. This phenomenon is not conducive to improving the mechanical properties of materials. In this study, a numerical simulation model of LPT was developed and validated by comparison of surface deformation with experiments. In order to investigate the phenomenon of residual stress loss quantitatively, an evaluation method of residual stress field was proposed. The effects of laser power density and laser spot radius on the residual stress, especially the residual stress loss, were systematically investigated. It is found that with the increase of laser power density or laser spot radius, the thickness of residual compressive layer in depth direction becomes larger. However, both the magnitude and the affecting zone size of residual stress loss will be increased, which implies a more severe residual stress loss phenomenon.


2011 ◽  
Vol 70 ◽  
pp. 279-284 ◽  
Author(s):  
D.M. Goudar ◽  
Ed J. Kingston ◽  
Mike C. Smith ◽  
Sayeed Hossain

Frequent failures of the pressuriser heater tubes used in Pressurised Water Reactors (PWRs) have been found. Axial cracks initiating from the tube outer diameter have been detected in some tubes as well as the resulting electrical problems. Replacement of the heater tubes requires an undesirably prolonged plant shutdown. In order to better understand these failures a series of residual stress measurements were carried out to obtain the near surface and through-thickness residual stress profiles in a stainless steel pressuriser heater tube. Three different residual stress measurement techniques were employed namely, Deep-Hole Drilling (DHD), Incremental Centre Hole Drilling (ICHD) and Sachs’ Boring (SB) to measure the through thickness residual stress distribution in the heater tubes. Results showed that the hoop stresses measured using all three techniques were predominantly tensile at all locations, while the axial stresses were found to be tensile at the surface and both tensile and compressive as they reduce to small magnitudes within the tube. The magnitude of the in-plane shear stresses was small at all measurement depths at all locations. The various measurement methods were found to complement each other well. All the measurements revealed a characteristic profile for the through-thickness residual stress distribution.


2006 ◽  
Vol 524-525 ◽  
pp. 253-258
Author(s):  
X.B. Wang

The stress distribution on the midsection of a pure bending beam where tensile strain localization band initiates on the tensile side of the beam and propagates within the beam is analyzed. Using the static equilibrium condition on the section of the midspan of the beam and the assumption of plane section as well as the linear softening constitutive relation beyond the tensile strength, the expressions for the length of tensile strain localization band and the distance from the tip of the band to the neutral axis are derived. After superimposing a linear unloading stress distribution over the initial stress distribution, the residual stress distribution on the midsection of the beam is investigated. In the process of strain localization band’s propagation, strain-softening behavior of the band occurs and neutral axis will shift. When the unloading moment is lower, the length of tensile strain localization band remains a constant since the stress on the base side of the beam is tensile stress. While, for larger unloading moment, with an increase of unloading moment, the length of tensile strain localization band decreases and the distance from the initial neutral axis to the unloading neutral axis increases. The neutral axis of midsection of the beam will shift in the unloading process. The present analysis is applicable to some metal materials and many quasi-brittle geomaterials (rocks and concrete, etc) in which tensile strength is lower than compressive strength. The present investigation is limited to the case of no real crack. Moreover, the present investigation is limited to the case that the length of strain localization band before unloading is less than half of depth of the beam. Otherwise, the residual tensile stress above the elastic neutral axis will be greater than the tensile strength, leading to the further development of tensile strain localization band in the unloading process.


2006 ◽  
Vol 532-533 ◽  
pp. 528-531 ◽  
Author(s):  
Bang Yan Ye ◽  
Bo Wu ◽  
Jian Ping Liu ◽  
Xiao Chu Liu ◽  
Xue Zhi Zhao

Theoretical analysis and experiments on bearing race show that a suitable residual compressive stress on roll path of bearing race can prolong its contact fatigue life. However, residual tensile stress is often found on workpiece surface of bearing race. To actively control the residual stress state and improve fatigue life of bearing part, a new method of pre-stress hard cutting is applied. In this paper, the principle of pre-stress hard cutting for bearing race is introduced as well as the experiments on it. In the experiments, residual stress, hardness and roughness of machined surface are measured and analyzed. Moreover, micro-topography and texture characteristics of machined surface are investigated and experimental results are compared with that by grinding. It is found that we can get residual compressive stress and fine quality on machined surface of bearing race by pre-stress hard cutting and increase its productivity as well.


Author(s):  
Yang Li ◽  
JinJie Chen ◽  
JianXi Wang ◽  
Hu Zhao ◽  
Long Chen

Rolling contact fatigue damage of rails is significantly influenced by residual stresses. A three-dimensional elastic-plastic finite element model of wheel–rail contact was established in the present study, and the influence of initial stresses resulting from rail manufacturing process on the residual stress distribution of rails was analyzed. The repeated rolling passes were simulated and the stable residual stress distribution of rails was obtained. The influence of factors, such as wheel load, friction coefficient, and longitudinal creep rate, on the residual stress distribution of rails was investigated. It is found that within the limited special scale affected by the wheel–rail contact, the difference between the longitudinal residual stress with initial stresses applied and that without initial stresses applied becomes quite small once enough rolling passes have occurred (i.e., 10 rolling passes). When the initial stresses are applied, the longitudinal residual compressive stress on wheel–rail contact center of the rail is approximately 500 MPa. The residual compressive stress decreases with the increasing depth and changes from compression to tension at the depth of 6 mm beneath wheel–rail contact center of the rail. The wheel load mainly affects the residual stress distribution along the depth direction beneath rail surface. The friction coefficient mainly affects the residual stress distribution on the rail surface. The longitudinal creep rate has a great influence on the longitudinal residual stresses at the surface and along the depth of the rail.


Sign in / Sign up

Export Citation Format

Share Document