scholarly journals Interlayer Reinforcement Combined with Fiber Reinforcement for Extruded Lightweight Mortar Elements

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4778
Author(s):  
Carla Matthäus ◽  
Nadine Kofler ◽  
Thomas Kränkel ◽  
Daniel Weger ◽  
Christoph Gehlen

Lightweight mortar extrusion enables the production of monolithic exterior wall components with improved thermal insulation by installing air chambers and reduced material demand compared to conventional construction techniques. However, without reinforcement, the systems are not capable of bearing high flexural forces and, thus, the application possibilities are limited. Furthermore, the layer bonding is a weak spot in the system. We investigate a reinforcement strategy combining fibers in the mortar matrix with vertically inserted elements to compensate the layer bonding. By implementing fibers in the extruded matrix, the flexural strength can be increased almost threefold parallel to the layers. However, there is still an anisotropy between the layers as fibers are oriented during deposition and the layer bond is still mainly depending on hydration processes. This can be compensated by the vertical insertion of reinforcement elements in the freshly deposited layers. Corrugated wire fibers as well as short steel reinforcement elements were suitable to increase the flexural strength between the layers. As shown, the potential increase in flexural strength could be of a factor six compared to the reference (12 N/mm2 instead of 1.9 N/mm2). Thus, the presented methods reduce anisotropy in flexural strength due to layered production.

2020 ◽  
Vol 36 ◽  
pp. 97-113
Author(s):  
V ViswaTeja Turlapati ◽  
Ch. Vineel

Ordinary concrete - a stone like structure which is formed by the chemical reaction of the cement, aggregate and water and is a brittle material which is strong in compression but very weak in tension, which causes cracks under small loads. These cracks gradually propagate to the compression end of the member and finally, the member breaks. These increase in size and magnitude with time and finally fails. One of the successful reinforcing methods is providing steel reinforcement but even then, cracks in reinforced concrete members extend freely. Thus, need for multidirectional and closely spaced steel reinforcement arises. Fiber reinforcement gives the solution for this problem. So, to increase the tensile strength of ordinary concrete a technique of introduction of fibers in concrete is being used. These fibers act as crack arrestors and prevent the propagation of the cracks, improves the post cracking response of the concrete, i.e., to improve its energy absorption capacity and apparent ductility, and crack control. The Present study focuses upon, Synthetic (Polypropylene) Fiber Reinforcement (SFRC) of 1% and 3% and Natural (Jute) Fiber Reinforcement (NFRC) of 1% and 3% by weight and are compared with respect to their compressive strength and flexural strength. The present study concludes considering the practical issue of workability of fibers, that in between synthetic and natural fibers selected, 1% Polypropylene fibers can be added as a reinforcement to ordinary concrete to enhance both compressive strength by nearly 2 times at 28 days curing duration and flexural strength by 35%% at 28 days curing duration. History and Development


2017 ◽  
Vol 5 (4RASM) ◽  
pp. 59-62
Author(s):  
Vishal Gadgihalli ◽  
Meena ◽  
Sindu ◽  
Raghavendra Prasad Dinakar

Fiber reinforced concrete is composite material consisting of mixtures of cement, mortar or concrete, discontinuous discrete uniform dispersed suitable fibers. Fiber reinforced concrete are of different types and properties. In this paper analysis of properties of concrete using steel fibre as fiber reinforcement admixture is studied and verified the strength of concrete to normal plane concrete with absence of admixtures. Using steel fibers as fiber reinforcement admixture increases bond strength by enhancing surface tension as steel is better in taking flexural strength this gives better results, hence we can use this steel fiber reinforcement to concrete where the compressive and flexural strength place a crucial role in construction and maintenance.


2013 ◽  
Vol 405-408 ◽  
pp. 2438-2442
Author(s):  
Yan Feng Li ◽  
Cong Cong Xu ◽  
Xue Fei Xing ◽  
Jin Zhang ◽  
Cheng Hu

Fire overflow on exterior wall with thermal insulation system has been studied by numerical simulation. The spread laws of fire overflow are analyzed through the temperature distribution near the window. The computational results are compared with those of test in the Exterior Insulation Fire Barrier Technical Guidelines (EIFBTG). It has been found that the calculated maximum temperature points is closed to the test on the first floor, the first ceiling, and the points near the above two windows. However, there are differences between two kinds of results above two floors and ceilings, and the points near the first window. It has also shown that when the HHR is 7.5KW, the scope of damage of exterior thermal insulation layer is about 15 square meters near the window. The research would provide reference for fire protection design of exterior wall thermal insulation in the high-rise buildings.


2018 ◽  
Vol 934 ◽  
pp. 222-226
Author(s):  
Jericson H. Advincula ◽  
Dustin Glenn C. Cuevas ◽  
Allan Dave A. Dela Cruz ◽  
John Paul D. Carreon

Permanent formwork building system is a method that uses the formwork as a contributor to the load bearing capacity of the structure. This study characterized the proposed foamed composite structural insulated panel (CSIP) with coir for load bearing wall application in low rise construction. The percentage of coir in foamed concrete that could significantly increase the compressive and flexural strength of the panel considering the effect of coir to the workability of the foamed concrete were determined. The results showed that the samples with 0.5% coir had the maximum increase in its compressive and flexural capacity and further addition of coir decreases its capacities. The results also showed that it could carry the required design loads. Moreover, using Euler’s buckling equation for the effect of slenderness, the panel could be used as exterior wall for a height of 2m, 3m, and 4m and as interior wall for a height of 2m and 3m. It can be concluded that the proposed panel could be used as a load bearing wall in low rise construction.


2012 ◽  
Vol 602-604 ◽  
pp. 948-951
Author(s):  
De Ling Wang ◽  
Zhong Li

Sandwich insulation walls can bear loadings and insulate thermal which are fit for cold and freezing areas. In this paper, small-sized concrete hollow blocks are selected as interior and exterior wall; expanded polystyrene (EPS) plates are selected as thermal insulation layer which are put between inner and outer layers. Effects of several factors on cooperative performance of interior and exterior wall under static loads were analyzed by numerical simulation. These factors include the type of connection steel, the vertical load and the property of interface between EPS and concrete blocks. The results show that among the connection steel of ‘Z’ shape, ring shape and tie netting, the last is the best. Displacement difference between interior and exterior walls increases with increasing vertical load. And if the interface friction between EPS block and concrete blocks is considered, displacement and displacement difference of sandwich walls all increase. These results agree with similar tests.


2015 ◽  
Vol 66 ◽  
pp. 161-164 ◽  
Author(s):  
Yanan Hou ◽  
Xudong Cheng ◽  
Shenyou Liu ◽  
Changcheng Liu ◽  
Heping Zhang

2017 ◽  
Vol 103 (1) ◽  
pp. 35-51 ◽  
Author(s):  
Kate Liszka

When building in dry-stone, Nubians and Egyptians used different techniques to construct walls. Wadi es-Sebua has been used as a type-site for C-Group Nubian settlements. Its exterior wall exhibits courses of stones laid at an angle, a technique I associate with Nubians. The Egyptian fortified mining settlements at Wadi el-Hudi, el-Hisnein, and Dihmit use dry-stone architecture, similar to the architecture at Wadi es-Sebua. Texts and pottery support that many Nubians also worked for contemporary Egyptian mining expeditions in the Eastern Desert during the early Middle Kingdom. I suggest that Nubian workforces carried out much of the architectural construction of these fortified settlements using their own traditional building techniques, but following an Egyptian design, and I argue that the so-called ‘loopholes’ found in these exterior walls were not for military defence, but rather were windows. These construction techniques point to a latent Nubian agency within the operation of Egyptian mining settlements.


2016 ◽  
Vol 722 ◽  
pp. 216-221
Author(s):  
Jitka Peterková ◽  
Martin Sedlmajer ◽  
Magdalena Kocianova

One of the options for improving the mechanical properties of cement composites is the use of fibre reinforcement. Nowadays, steel or polymer fibres are most frequently used for this purpose. However, given the increasingly stricter requirements related to environmental protection, one goal is to find ways of using alternative fibres of natural origin or waste fibres for which it is difficult to find other practical use. This paper focuses on one part of the development of materials which contain natural waste fibres as dispersed reinforcement in thermally insulating cement composites. The authors aimed to observe what influence the fibres have on the material’s final mechanical properties as well as thermal insulation properties. Another important factor, which was investigated, was the quotient of mechanical and thermal insulation properties. The results of this research showed that waste cellulose fibres have a considerable effect. The best compressive strength values were found in mixture M-2-BF which contained waste basalt fibres. The highest flexural strength values were reached by mixture M-3-CF-a containing cellulose fibres.


Sign in / Sign up

Export Citation Format

Share Document