scholarly journals Characteristics of Lightweight Concrete Based on a Synthetic Polymer Foaming Agent

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4979 ◽  
Author(s):  
Marta Kadela ◽  
Alfred Kukiełka ◽  
Marcin Małek

The components of foamed concrete have a significant effect on its properties. Protein-based foamed concrete is used much more often. This study aims to assess the properties of foamed concrete with a density of around 500, 700, 800 and 1000 kg/m3 formed by using a synthetic polymer-based foaming agent. The distribution of pores, wet and dry density and compressive strengths were evaluated. In addition, the creep deformations of foamed concrete with different densities were measured. The difference in density of up to 170 kg/m3 for the highest densities was obtained. Foamed concrete with higher densities (700 and 800 kg/m3) showed similar characteristics of pores, which were different from those of samples with a density of 500 kg/m3. Compressive strength equal to 5.9 ± 0.2, 5.1 ± 0.2, 3.8 ± 0.3 and 1.4 ± 0.2 MPa was obtained for foamed concrete with a density of 500, 700, 800 and 1000 kg/m3, respectively. The obtained compressive strengths were higher than those found in the literature for the foamed concrete with the same densities. With increasing density, smaller creep deformations were obtained. Creep deformations were 509, 495 and 455 με for samples with densities of around 500, 700 and 1000 kg/m3 respectively. Deformation under long-term loading took place up to 90 days, regardless of the density of the foamed concrete.

2013 ◽  
Vol 743-744 ◽  
pp. 166-170
Author(s):  
Ting Song Yang ◽  
Ling Chao Lu ◽  
Shou De Wang ◽  
Chen Chen Gong

The key influences of foamed concrete and the optimum preparation technology were studied. The performance of foamed concrete was analyzed by the compressive strength testing, SEM. Results show that the flowability of cement paste is good when water-cement ratio is 0.4. The amount of foam added in sulphoaluminate cement is not able to exceed 3.5L/kg. However, the dilution multiple of foaming agent is near concentration and the mixing time depends on the foam quantity. When the water-cement ratio is 0.4, the foam quantity is 3 L/kg and the foaming agent is diluted 30 times. When the mixing time is 60s, the dry density is around 380kg/m3 and the 7d compressive strength reaches to 0.9MPa.


2018 ◽  
Vol 7 (3.10) ◽  
pp. 66
Author(s):  
T Subramani ◽  
R Amul

Foam concrete is a form of aerated lightweight concrete. Foamed concrete has emerged as most industrial fabric in Production Company. Foam concrete is produced while pre-fashioned foam is brought to slurry, the characteristic of froth is to create an air voids in cement–primarily based absolutely slurry. Foam is generated one by one via using foam generator; the foaming agent is diluted with water and aerated to create the froth. The cement paste or slurry set throughout the foam bubbles and whilst the froth being to degenerate, the paste has enough power to keep its form around the air voids. Consequently, this study investigates bodily and mechanical residences of foamed concrete. Ultimately comparative analyses had been finished to decide the relationships the various numerous mechanical homes parameters of the foamed concrete, especially the compressive strength, flexural electricity, splitting tensile electricity. The specimen analysed by means of the usage of the use of e- tab software program.  


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3596 ◽  
Author(s):  
Xiuzhi Zhang ◽  
Qing Yang ◽  
Qinfei Li ◽  
Heng Chen ◽  
Guofa Zheng ◽  
...  

Foamed concrete materials based on sulpoaluminate cement were prepared by the chemical foaming method. The effects of water–cement ratio, foaming agent, and foaming stabilizer on the mechanical and thermal properties of foamed concrete were studied. Meanwhile, a portion of cement was replaced with foamed phenolic particles to further optimize the performance of foamed concrete; the results show that when the water–cement ratio was 0.53, the foaming agent content was 5%, the foam stabilizer was 1%, and the substitution of phenolic particles was 20%, the performance indexes of foamed concrete were the best. Methods, describing briefly the main methods or treatments applied: dry density was 278.4 kg/m3, water absorption was 19.9%, compressive strength was 3.01 MPa, and thermal conductivity was 0.072 W/(m·K). By the pore structure analysis of the foamed concrete suing Micro-CT, it was found that when the replacement amount of phenolic particles was 20%, the pore size of foamed concrete was relatively uniform, the minimum D90 was 225 μm respectively. The combination of organic and inorganic matrix and optimized pore structure improved the performance of foamed concrete.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1072 ◽  
Author(s):  
Dong Van Dao ◽  
Hai-Bang Ly ◽  
Huong-Lan Thi Vu ◽  
Tien-Thinh Le ◽  
Binh Thai Pham

Development of Foamed Concrete (FC) and incessant increases in fabrication technology have paved the way for many promising civil engineering applications. Nevertheless, the design of FC requires a large number of experiments to determine the appropriate Compressive Strength (CS). Employment of machine learning algorithms to take advantage of the existing experiments database has been attempted, but model performance can still be improved. In this study, the performance of an Artificial Neural Network (ANN) was fully analyzed to predict the 28 days CS of FC. Monte Carlo simulations (MCS) were used to statistically analyze the convergence of the modeled results under the effect of random sampling strategies and the network structures selected. Various statistical measures such as Coefficient of Determination (R2), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) were used for validation of model performance. The results show that ANN is a highly efficient predictor of the CS of FC, achieving a maximum R2 value of 0.976 on the training part and an R2 of 0.972 on the testing part, using the optimized C-ANN-[3–4–5–1] structure, which compares with previous published studies. In addition, a sensitivity analysis using Partial Dependence Plots (PDP) over 1000 MCS was also performed to interpret the relationship between the input parameters and 28 days CS of FC. Dry density was found as the variable with the highest impact to predict the CS of FC. The results presented could facilitate and enhance the use of C-ANN in other civil engineering-related problems.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ming Kun Yew ◽  
Hilmi Bin Mahmud ◽  
Bee Chin Ang ◽  
Ming Chian Yew

The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (duraandtenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3–5, 6–9, and 10–15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10–15-year-old crushedduraOPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days.


2011 ◽  
Vol 399-401 ◽  
pp. 1214-1217 ◽  
Author(s):  
Xin Gang Yu ◽  
Yan Na Gao ◽  
Lin Lin ◽  
Fang Li

Lightweight concrete has been used for structural purposes for many years and it is developed very fast in resent years due to its lightweight and favourable for insulation properties. High strength foam concrete is a fairly new kind of lightweight concrete with excellent properties of outstanding workability, low density and high strength. Responsible for these properties are the macro-, meso- and micro- porosity of the foam concrete which are mainly affected by the foaming agent. The influence of foaming agent’s dilution ratio and foam dosage on the fluidity, compressive strength, flexural strength and drying shrinkage of high density foam concrete designed for structural materials is investigated in this paper.


2018 ◽  
Vol 162 ◽  
pp. 02024
Author(s):  
Waleed Abbas ◽  
Wasan Khalil ◽  
Ibtesam Nasser

Due to the rapid depletion of natural resources, the use of waste materials and by-products from different industries of building construction has been gaining increased attention. Geopolymer concrete based on Pozzolana is a new material that does not need the presence of Portland cement as a binder. The main focus of this research is to produce lightweight geopolymer concrete (LWGPC) using artificial coarse lightweight aggregate which produced from locally available bentonite clays. In this investigation, the binder is low calcium fly ash (FA) and the alkali activator is sodium hydroxide and sodium silicate in different molarities. The experimental tests including workability, fresh density, also, the compressive strength, splitting tensile strength, flexural strength, water absorption and ultrasonic pulse velocity at the age of 7, 28 and 56 days were studied. The oven dry density and thermal conductivity at 28 days age are investigated. The results show that it is possible to produce high strength lightweight geopolymer concrete successfully used as insulated structural lightweight concrete. The 28-day compressive strength, tensile strength, flexural strength, dry density, and thermal conductivity of the produced LWGPC are 35.8 MPa, 2.6MPa, 5.5 MPa, 1835kg/m3, and 0.9567 W/ (m. K), respectively.


2021 ◽  
Author(s):  
Chaoming PANG ◽  
Xinxin MENG ◽  
Chunpeng ZHANG ◽  
Jinlong PAN

Abstract Shrinkage of foam concrete can easily cause cracking and thus makes it difficult for a manufacturer to maintain quality. The density of lightweight aggregate concrete is too high to meet specifications for lightweight and thermal insulation for wallboard. Two types of concrete with dry density in the range 1000–1200 kg/m3 for use in wallboard were designed and prepared using foam and lightweight aggregate. The properties of porous lightweight aggregate concrete with core-shell non-sintered lightweight aggregate were compared with sintered lightweight aggregate concrete along with several dimensions. The two aggregates were similar in particle size, density, and strength. The effects of each aggregate on the workability, compressive strength, dry shrinkage, and thermal conductivity of the lightweight concrete were analyzed and compared. Pore structures were determined by mercury intrusion porosimetry and X-ray computed tomography. Compressive strength ranged from 7.8 to 11.8 MPa, and thermal conductivity coefficients ranged from 0.193 to 0.219 W/m/K for both types of concrete. The results showed that the core-shell non-sintered lightweight aggregate bonded better with the paste matrix at the interface transition zone and had a better pore structure than the sintered lightweight aggregate concrete. Slump flow of the core-shell non-sintered lightweight aggregate concrete was about 20% greater than that of the sintered lightweight aggregate concrete, 28d compressive strength was about 10% greater, drying shrinkage was about 10% less, and thermal conductivity was less. Porous lightweight aggregate concrete using core-shell non-sintered lightweight aggregate performs well when used in wallboard because of its low density, high thermal insulation, and improved strength.


2018 ◽  
Vol 9 (1) ◽  
pp. 27-33 ◽  
Author(s):  
P. A. Shawnim ◽  
F. Mohammad

This paper investigates the effect of toner as a new material on enhancing compressive strength and permeability of foamed concrete (FC). The aim is to develop the FC through testing the reaction of toner with the cement of the FC, to produce a hydrophobic lightweight FC to use for structural elements. Foamed concrete is generally made of ordinary Portland cement (OPC), sand, foaming agent, and water with a well spread pore structure. The experiment was carried out on 100 mm cubes. Results for toner inclusion of all the mixes, when added in the right quantities, showed high improvement for water penetration and compressive strength in comparison to the published data on FC for the use as structural material, which is a step forward in the advancement of FC to meet the aim of this research.


Sign in / Sign up

Export Citation Format

Share Document