scholarly journals Investigation and Optimization of the C-ANN Structure in Predicting the Compressive Strength of Foamed Concrete

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1072 ◽  
Author(s):  
Dong Van Dao ◽  
Hai-Bang Ly ◽  
Huong-Lan Thi Vu ◽  
Tien-Thinh Le ◽  
Binh Thai Pham

Development of Foamed Concrete (FC) and incessant increases in fabrication technology have paved the way for many promising civil engineering applications. Nevertheless, the design of FC requires a large number of experiments to determine the appropriate Compressive Strength (CS). Employment of machine learning algorithms to take advantage of the existing experiments database has been attempted, but model performance can still be improved. In this study, the performance of an Artificial Neural Network (ANN) was fully analyzed to predict the 28 days CS of FC. Monte Carlo simulations (MCS) were used to statistically analyze the convergence of the modeled results under the effect of random sampling strategies and the network structures selected. Various statistical measures such as Coefficient of Determination (R2), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) were used for validation of model performance. The results show that ANN is a highly efficient predictor of the CS of FC, achieving a maximum R2 value of 0.976 on the training part and an R2 of 0.972 on the testing part, using the optimized C-ANN-[3–4–5–1] structure, which compares with previous published studies. In addition, a sensitivity analysis using Partial Dependence Plots (PDP) over 1000 MCS was also performed to interpret the relationship between the input parameters and 28 days CS of FC. Dry density was found as the variable with the highest impact to predict the CS of FC. The results presented could facilitate and enhance the use of C-ANN in other civil engineering-related problems.

2021 ◽  
Vol 5 (10) ◽  
pp. 271
Author(s):  
Priyanka Gupta ◽  
Nakul Gupta ◽  
Kuldeep K. Saxena ◽  
Sudhir Goyal

Geopolymer is an eco-friendly material used in civil engineering works. For geopolymer concrete (GPC) preparation, waste fly ash (FA) and calcined clay (CC) together were used with percentage variation from 5, 10, and 15. In the mix design for geopolymers, there is no systematic methodology developed. In this study, the random forest regression method was used to forecast compressive strength and split tensile strength. The input content involved were caustic soda with 12 M, 14 M, and 16 M; sodium silicate; coarse aggregate passing 20 mm and 10 mm sieve; crushed stone dust; superplasticizer; curing temperature; curing time; added water; and retention time. The standard age of 28 days was used, and a total of 35 samples with a target-specified compressive strength of 30 MPa were prepared. In all, 20% of total data were trained, and 80% of data testing was performed. Efficacy in terms of mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2), and MSE (mean squared error) is suggested in the model. The results demonstrated that the RFR model is likely to predict GPC compressive strength (MAE = 1.85 MPa, MSE = 0.05 MPa, RMSE = 2.61 MPa, and R2 = 0.93) and split tensile strength (MAE = 0.20 MPa, MSE = 6.83 MPa, RMSE = 0.24 MPa, and R2 = 0.90) during training.


2020 ◽  
Vol 14 (1) ◽  
pp. 237-249
Author(s):  
Yasin Abdi ◽  
Ehsan Momeni ◽  
Reza Rashidi Khabir

Background: The reliable determination of geomechanical parameters of rocks such as Unconfined Compressive Strength (UCS) using laboratory methods is problematic and time-consuming. In this regard, the construction of reliable predictive models for assessing the UCS is of advantage. Objective: The main purpose of this work is to propose the use of a reliable PSO-based ANN approach for predicting the UCS of sandstones. Methods: For this purpose, laboratory tests were performed on 60 sandstone specimens. The laboratory tests comprise P-wave velocity, dry density, Schmidt hardness and UCS. Apart from the latter, the other laboratory tests were set as model inputs. Prediction performance of the constructed model was assessed according to the criteria including coefficient of determination (R2), Root Mean Squared Error (RMSE) and Variance Account For (VAF). Results: Results (R2= 0.974 and RMSE = 0.086 and VAF = 97.5) showed the reliability of the constructed PSO-based ANN model to predict UCS of sandstones. Conclusion: Hence, this study recommends utilizing PSO-based ANN as a feasible tool for assessing UCS of sandstones. Nevertheless, further research is suggested for model generalization purposes.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5420
Author(s):  
Alexandre Lucas ◽  
Konstantinos Pegios ◽  
Evangelos Kotsakis ◽  
Dan Clarke

The importance of price forecasting has gained attention over the last few years, with the growth of aggregators and the general opening of the European electricity markets. Market participants manage a tradeoff between, bidding in a lower price market (day-ahead), but with typically higher volume, or aiming for a lower volume market but with potentially higher returns (balance energy market). Companies try to forecast the extremes of revenues or prices, in order to manage risk and opportunity, assigning their assets in an optimal way. It is thought that in general, electricity markets have quasi-deterministic principles, rather than being based on speculation, hence the desire to forecast the price based on variables that can describe the outcome of the market. Many studies address this problem from a statistical approach or by performing multiple-variable regressions, but they very often focus only on the time series analysis. In 2019, the Loss of Load Probability (LOLP) was made available in the UK for the first time. Taking this opportunity, this study focusses on five LOLP variables (with different time-ahead estimations) and other quasi-deterministic variables, to explain the price behavior of a multi-variable regression model. These include base production, system load, solar and wind generation, seasonality, day-ahead price and imbalance volume contributions. Three machine-learning algorithms were applied to test for performance, Gradient Boosting (GB), Random Forest (RF) and XGBoost. XGBoost presented higher performance and so it was chosen for the implementation of the real time forecast step. The model returns a Mean Absolute Error (MAE) of 7.89 £/MWh, a coefficient of determination (R2 score) of 76.8% and a Mean Squared Error (MSE) of 124.74. The variables that contribute the most to the model are the Net Imbalance Volume, the LOLP (aggregated), the month and the De-rated margins (aggregated) with 28.6%, 27.5%, 14.0%, and 8.9% of weight on feature importance respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hai-Van Thi Mai ◽  
Thuy-Anh Nguyen ◽  
Hai-Bang Ly ◽  
Van Quan Tran

Improvement of compressive strength prediction accuracy for concrete is crucial and is considered a challenging task to reduce costly experiments and time. Particularly, the determination of compressive strength of concrete using ground granulated blast furnace slag (GGBFS) is more difficult due to the complexity of the composition mix design. In this paper, an approach using random forest (RF), which is one of the powerful machine learning algorithms, is proposed for predicting the compressive strength of concrete using GGBFS. The RF model is first evaluated to determine the best architecture, which constitutes 500 growth trees and leaf size of 1. In the next step, the evaluation of the model is conducted over 500 simulations considering the effect of random sampling. Finally, the best prediction results are given in function of statistical measures such as the correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE), respectively, which are 0.9729, 4.9585, and 3.9423 for the testing dataset. The results show that the RF algorithm is an excellent predictor and practically used for engineers to reduce experimental cost.


2020 ◽  
Vol 5 (2) ◽  
pp. 183-186
Author(s):  
Ledisi Giok Kabari ◽  
Marcus B. Chigoziri ◽  
Joseph Eneotu

In this study, we discuss various machine learning algorithms and architectures suitable for the Nigerian Naira exchange rate forecast. Our analyses were focused on the exchange rates of the British Pounds, US Dollars and the Euro against the Naira. The exchange rate data was sourced from the Central Bank of Nigeria. The performances of the algorithms were evaluated using Mean Squared Error, Root Mean Squared Error, Mean Absolute Error and the coefficient of determination (R-Squared score). Finally, we compared the performances of these algorithms in forecasting the exchange rates.


Author(s):  
Zhai Mingyu ◽  
Wang Sutong ◽  
Wang Yanzhang ◽  
Wang Dujuan

AbstractData-driven techniques improve the quality of talent training comprehensively for university by discovering potential academic problems and proposing solutions. We propose an interpretable prediction method for university student academic crisis warning, which consists of K-prototype-based student portrait construction and Catboost–SHAP-based academic achievement prediction. The academic crisis warning experiment is carried out on desensitization multi-source student data of a university. The experimental results show that the proposed method has significant advantages over common machine learning algorithms. In terms of achievement prediction, mean square error (MSE) reaches 24.976, mean absolute error (MAE) reaches 3.551, coefficient of determination ($$R^{2}$$ R 2 ) reaches 80.3%. The student portrait and Catboost–SHAP method are used for visual analysis of the academic achievement factors, which provide intuitive decision support and guidance assistance for education administrators.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 489
Author(s):  
Fadi Almohammed ◽  
Parveen Sihag ◽  
Saad Sh. Sammen ◽  
Krzysztof Adam Ostrowski ◽  
Karan Singh ◽  
...  

In this investigation, the potential of M5P, Random Tree (RT), Reduced Error Pruning Tree (REP Tree), Random Forest (RF), and Support Vector Regression (SVR) techniques have been evaluated and compared with the multiple linear regression-based model (MLR) to be used for prediction of the compressive strength of bacterial concrete. For this purpose, 128 experimental observations have been collected. The total data set has been divided into two segments such as training (87 observations) and testing (41 observations). The process of data set separation was arbitrary. Cement, Aggregate, Sand, Water to Cement Ratio, Curing time, Percentage of Bacteria, and type of sand were the input variables, whereas the compressive strength of bacterial concrete has been considered as the final target. Seven performance evaluation indices such as Correlation Coefficient (CC), Coefficient of determination (R2), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Bias, Nash-Sutcliffe Efficiency (NSE), and Scatter Index (SI) have been used to evaluate the performance of the developed models. Outcomes of performance evaluation indices recommend that the Polynomial kernel function based SVR model works better than other developed models with CC values as 0.9919, 0.9901, R2 values as 0.9839, 0.9803, NSE values as 0.9832, 0.9800, and lower values of RMSE are 1.5680, 1.9384, MAE is 0.7854, 1.5155, Bias are 0.2353, 0.1350 and SI are 0.0347, 0.0414 for training and testing stages, respectively. The sensitivity investigation shows that the curing time (T) is the vital input variable affecting the prediction of the compressive strength of bacterial concrete, using this data set.


2021 ◽  
Author(s):  
Hangsik Shin

BACKGROUND Arterial stiffness due to vascular aging is a major indicator for evaluating cardiovascular risk. OBJECTIVE In this study, we propose a method of estimating age by applying machine learning to photoplethysmogram for non-invasive vascular age assessment. METHODS The machine learning-based age estimation model that consists of three convolutional layers and two-layer fully connected layers, was developed using segmented photoplethysmogram by pulse from a total of 752 adults aged 19–87 years. The performance of the developed model was quantitatively evaluated using mean absolute error, root-mean-squared-error, Pearson’s correlation coefficient, coefficient of determination. The Grad-Cam was used to explain the contribution of photoplethysmogram waveform characteristic in vascular age estimation. RESULTS Mean absolute error of 8.03, root mean squared error of 9.96, 0.62 of correlation coefficient, and 0.38 of coefficient of determination were shown through 10-fold cross validation. Grad-Cam, used to determine the weight that the input signal contributes to the result, confirmed that the contribution to the age estimation of the photoplethysmogram segment was high around the systolic peak. CONCLUSIONS The machine learning-based vascular aging analysis method using the PPG waveform showed comparable or superior performance compared to previous studies without complex feature detection in evaluating vascular aging. CLINICALTRIAL 2015-0104


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1313 ◽  
Author(s):  
Sunil Saha ◽  
Jagabandhu Roy ◽  
Alireza Arabameri ◽  
Thomas Blaschke ◽  
Dieu Tien Bui

Gully erosion is a form of natural disaster and one of the land loss mechanisms causing severe problems worldwide. This study aims to delineate the areas with the most severe gully erosion susceptibility (GES) using the machine learning techniques Random Forest (RF), Gradient Boosted Regression Tree (GBRT), Naïve Bayes Tree (NBT), and Tree Ensemble (TE). The gully inventory map (GIM) consists of 120 gullies. Of the 120 gullies, 84 gullies (70%) were used for training and 36 gullies (30%) were used to validate the models. Fourteen gully conditioning factors (GCFs) were used for GES modeling and the relationships between the GCFs and gully erosion was assessed using the weight-of-evidence (WofE) model. The GES maps were prepared using RF, GBRT, NBT, and TE and were validated using area under the receiver operating characteristic (AUROC) curve, the seed cell area index (SCAI) and five statistical measures including precision (PPV), false discovery rate (FDR), accuracy, mean absolute error (MAE), and root mean squared error (RMSE). Nearly 7% of the basin has high to very high susceptibility for gully erosion. Validation results proved the excellent ability of these models to predict the GES. Of the analyzed models, the RF (AUROC = 0.96, PPV = 1.00, FDR = 0.00, accuracy = 0.87, MAE = 0.11, RMSE = 0.19 for validation dataset) is accurate enough for modeling and better suited for GES modeling than the other models. Therefore, the RF model can be used to model the GES areas not only in this river basin but also in other areas with the same geo-environmental conditions.


2019 ◽  
Vol 9 (18) ◽  
pp. 3841 ◽  
Author(s):  
Ly ◽  
Pham ◽  
Dao ◽  
Le ◽  
Le ◽  
...  

Use of manufactured sand to replace natural sand is increasing in the last several decades. This study is devoted to the assessment of using Principal Component Analysis (PCA) together with Teaching-Learning-Based Optimization (TLBO) for enhancing the prediction accuracy of individual Adaptive Neuro Fuzzy Inference System (ANFIS) in predicting the compressive strength of manufactured sand concrete (MSC). The PCA technique was applied for reducing the noise in the input space, whereas, TLBO was employed to increase the prediction performance of single ANFIS model in searching the optimal weights of input parameters. A number of 289 configurations of MSC were used for the simulation, especially including the sand characteristics and the MSC long-term compressive strength. Using various validation criteria such as Correlation Coefficient (R), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE), the proposed method was validated and compared with several models, including individual ANFIS, Artificial Neural Networks (ANN) and existing empirical equations. The results showed that the proposed model exhibited great prediction capability compared with other models. Thus, it appeared as a robust alternative computing tool or an efficient soft computing technique for quick and accurate prediction of the MSC compressive strength.


Sign in / Sign up

Export Citation Format

Share Document