scholarly journals Influence of Redispersible Powder on Properties of Self-Leveling Mortar of Ternary Cementitious System

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5703
Author(s):  
Wenyan Dong ◽  
Congqi Fang ◽  
Ran Hu

The self-leveling mortar (SLM) of a ternary cementitious system with different dosages of redispersible powder (RP) with ordinary Portland cement (OPC), sulfoaluminate cement (SAC), and calcium sulfate (CS) as cementitious materials was investigated with regard to fluidity, bond strength, shrinkage rate, abrasion resistance, flexural strength, and compressive strength. The performance parameters obtained from the experimental test for SLM were weighted values calculated with an analytic hierarchy process (AHP). The comprehensive index of performance was evaluated on the basis of a weighted-sum method, and the optimal dosage of RP was determined according to the comprehensive index. The experimental results demonstrated that the fluidity of SLM decreased with the increase in RP dosage at the beginning but then increased thereafter and decreased rapidly as the dosage went beyond 3.0%. The addition of RP resulted in a significant improvement in bond strength (of SLM), reduction in the shrinkage rate, abrasion loss, early flexural strength and compressive strength, and resistance to cracking. The properties of SLM with 3.0% RP can meet the requirements of the industrial standard for cementitious self-leveling floor mortar. Compared with the SLM without RP, the bond strength of SLM with 3.0% RP was increased by 46.7%, while the shrinkage rate and abrasion loss were reduced by 50% and 71.9% respectively. The weighted values of fluidity, compressive strength, flexural strength, stability, cohesiveness, and abrasion resistance were 0.422, 0.196, 0.196, 0.089, 0.058, and 0.039, respectively. A higher value of the comprehensive index generally denotes a better performance. The comprehensive index of SLM with 3.0% RP was the highest.

2011 ◽  
Vol 366 ◽  
pp. 494-497
Author(s):  
Wei Jun Yang ◽  
Huan Zeng

This article analyzes about four aspects of insulation mortar of various performance indicators, including anti-cracking, flexural strength and compressive strength, shear bond strength and shrinkage rate, it is concluded that the insulation mortar meets to various performance indicators requirement of masonry mortar or plastering mortar.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2136
Author(s):  
Shaokang Zhang ◽  
Ru Wang ◽  
Linglin Xu ◽  
Andreas Hecker ◽  
Horst-Michael Ludwig ◽  
...  

This paper studies the influence of hydroxyethyl methyl cellulose (HEMC) on the properties of calcium sulfoaluminate (CSA) cement mortar. In order to explore the applicability of different HEMCs in CSA cement mortars, HEMCs with higher and lower molar substitution (MS)/degree of substitution (DS) and polyacrylamide (PAAm) modification were used. At the same time, two kinds of CSA cements with different contents of ye’elimite were selected. Properties of cement mortar in fresh and hardened states were investigated, including the fluidity, consistency and water-retention rate of fresh mortar and the compressive strength, flexural strength, tensile bond strength and dry shrinkage rate of hardened mortar. The porosity and pore size distribution were also analyzed by mercury intrusion porosimetry (MIP). Results show that HEMCs improve the fresh state properties and tensile bond strength of both types of CSA cement mortars. However, the compressive strength of CSA cement mortars is greatly decreased by the addition of HEMCs, and the flexural strength is decreased slightly. The MIP measurement shows that HEMCs increase the amount of micron-level pores and the porosity. The HEMCs with different MS/DS have different effects on the improvement of tensile bond strength in different CSA cement mortars. PAAm modification can improve the tensile bond strength of HEMC-modified CSA cement mortar.


2017 ◽  
Vol 730 ◽  
pp. 395-400 ◽  
Author(s):  
Shi Bing Sun ◽  
Jun Jie Li ◽  
Lun Zhao

The current paper experimentally investigated the effect of different kinds re-dispersible polymer powers (RPP) on cement-based self-leveling mortars. The construction operation of mortar and its mechanical property was tested in accordance with the standard JC/T 981-2005. Besides, the micro-structure surface of self-leveling mortar was characterized by means of SEM to reflect the microscopic mechanism of the performance. The results showed the dispersible polymer powders could significantly improve performance of fluidity, adhesion property and abrasion resistance on cement-based self-leveling mortar; Meanwhile, there is no bad impact on its compressive strength and flexural strength. This study has guiding significance for the construction and application of cement based self-leveling mortar.


Author(s):  
Solomon Debbarma ◽  
Surender Singh ◽  
G. D. Ransinchung R.N.

The present study evaluates the potential and suitability of different fractions of reclaimed asphalt pavement (RAP) for roller compacted concrete pavement (RCCP) mixes. Natural coarse and fine aggregates were replaced, partially and in combination, by coarse RAP, fine RAP, and combined RAP for preparation of RCCP mixes. The considered properties to determine the optimum RAP fraction and its proportion for RCCP were fresh density and water demand, compressive strength, flexural strength, split tensile strength, porosity, water absorption, abrasion resistance, and performance in aggressive environments of chloride- and sulfate-rich ions. It was observed that inclusions of all the fractions of RAP considered could reduce the strength related properties of RCCP mixes significantly at all curing ages. However, fine RAP mixes were found to exhibit better strength properties than coarse RAP and combined RAP mixes. It was also observed that none of the RAP mixes could achieve the recommended compressive strength criterion of 27.6 MPa, however, they exhibited enough flexural strength to replace a fraction of conventional aggregates, individually or in combination, for construction using RCCP. In fact, 50% coarse and 50% fine RAP mixes had higher flexural strength than the target laboratory mean strength of 4.3 MPa. Similarly, these mixes were found to have sufficient abrasion resistance and could be included in RCCP (surface course) to be constructed in areas having high concentrations of chloride and sulfate ions. Additionally, the results also indicated that higher proportions of fine RAP may be suggested for RCCP mixes to be laid in sulfatic environments.


Author(s):  
Adda Hadj Mostefa ◽  
Merdaci Slimane

This work is carried out to investigate the performance of concrete reinforced with plastic fibers obtained locally (bottle waste as fiber). Bottle waste plastic was chosen because it is being thrown after single use and cause environmental problem. One way to recycle wasted bottles plastic is grinded into irregular fiber. Then, it was incorporate with the concrete and tests the performance of the concrete. The study was conducted using cylindrical and rectangular (cube) mold of concrete to investigate the performance of the concrete in term of mechanical properties. In this research, the mechanical properties that were measured are compressive strength, splitting tensile strength and flexural strength. The results revealed that the presence of plastic fiber in concrete will increase the concrete performance, as well as the concrete bond strength is improved and the cracks in the concrete decrease the use of fibers and reduce plastic waste.


2011 ◽  
Vol 236-238 ◽  
pp. 1554-1558
Author(s):  
Zhi Jie Zhang ◽  
Tao Li ◽  
Ping An Liu

The influences of desulfurization gypsum on the properties of both Magnesium oxychloride cement (MOC) pastes and MOC abrasive tools were investigated in this study. By incorporating desulfurization gypsum in the MOC pastes, the compressive strength of MOC paste improved slightly. With 5% gypsum addition, the flexural strength of MOC pastes increased by 36%, the abrasion loss of MOC abrasive tools decreased by 35%, the strength softening coefficient greatly increased. The mechanism maybe due to the microstructure of the MOC pastes became more compact with gypsum adding, the rate of hydrolyzation reaction of MOC phases would be postponed.


2017 ◽  
Vol 25 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Tsai-Lung Weng ◽  
Wei-Ting Lin ◽  
Cheng-Hao Li

The repair of damaged structures is a complicated problem in the construction industry and it is no uniform standard for evaluating the effectiveness of repair materials. Two different redispersible polymer powders, ethylene vinyl acetate (EVA) and polyvinyl acetate-vinyl carboxylate (VA/VeoVa), were added in the repair mortars with two water-cement ratios and three polymer-cement ratios. The effectiveness of repair materials was evaluated according to the physical, mechanical properties and micrographs. Testing program includes setting time, drying shrinkage, thermal expansion, compressive strength, tensile strength, flexural strength, bond strength, X-ray diffraction analysis, scanning electron microscopy observation. Test results show that the specimens with VA/VeoVa and w/c of 0.5 have highest compressive strength, tensile strength, flexural strength and bond strength. The specimen with EVA also has higher strength than control one at the age of 28 days. The drying shrinkage deformation of VA/VeoVa specimen is close to the control one. The specimens with VA/VeoVa have lower thermal expansion than EVA specimen when the water-cement ratio is 0.5 and there is no difference between EVA and VA/VeoVa specimens for the water-cement ratio of 0.6. The micrographs show that adding polymer powder can reduce the pore and improve the durability.


2017 ◽  
Vol 863 ◽  
pp. 59-63
Author(s):  
Shi Bing Sun ◽  
Jin Wei Li ◽  
Jun Jie Li ◽  
Lun Zhao

In this paper, the effect of anhydrite on the cement-based self-leveling mortar performance was studied. The construction operation of mortar and its mechanical property testing were based on the standard JC/T 981-2005. The results showed that the anhydrite played a significant role on the performance of compressive strength and flexural strength. Furthermore, the best performance of dimensional change rate, abrasion resistance and adhesive strength was obtained with 8% anhydrite content. This study has guiding significance for the construction and application of cement-based self-leveling mortar.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2948 ◽  
Author(s):  
Stefania Grzeszczyk ◽  
Aneta Matuszek-Chmurowska ◽  
Eva Vejmelková ◽  
Robert Černý

The paper presents the test results of basalt fiber impact on a compressive and flexural strength, resistance to abrasion and porosity of Reactive Powder Concrete (RPC). The reasons for testing were interesting mechanical properties of basalt fibers, the significant tensile strength and flexural strength, and in particular the resistance to high temperatures, as well as a relatively small number of RPC tests performed with those fibers and different opinions regarding the impact of those fibers on concrete strength. The composition of the concrete mix was optimized to obtain the highest packing density of particles in the composite, based on the optimum particle size distribution curve acc. to Funk. Admixture of basalt fibers was used in quantity 2, 3, 6, 8 and 10 kg/m3, length 12 mm and diameter 18 µm. A low water-to-binder ratio, i.e., from 0.24, was obtained through application of a polycarboxylate-based superplasticizer. The introduction of up to 10 kg/m3 of basalt fibers to RPC mix was proved to be possible, while keeping the same w/c ratio equal to 0.24, with a slight loss of workability of the concrete mix as the content of fibers increased. It was found that the increase of the fiber content in RPC to 10 kg/m3, despite the w/c ratio was kept the same, caused reduction of the concrete compressive strength by 18.2%, 7.8% and 13.6%, after 2, 7, and 28 days respectively. Whereas, the flexural strength of RPC increased gradually (maximum by 15.9%), along with the fiber quantity increase up to 6 kg/m3, and then it reduced (maximum by 17.7%), as the fiber content in the concrete was further increased. The reduction of RPC compressive strength, along with the increase in basalt fibers content, leads to the increase of the total porosity, as well as the change in pore volume distribution. The reduction of RPC abrasion resistance was demonstrated along with the increase of basalt fibers content, which was explained by the compressive strength reduction of that concrete. A linear relation between the RPC abrasion resistance and the compressive strength involves a high determination coefficient equal to 0.97.


2016 ◽  
Vol 16 ◽  
pp. 52-68 ◽  
Author(s):  
S. Krishna Rao ◽  
P. Sravana ◽  
T. Chandrasekhar Rao

In this paper an attempt has been made to know the effect of Fly Ash (FA) on Roller Compacted Concrete (RCC) properties like strength and abrasion resistance. The Cement was partially replaced by three kinds of replacements (20%, 40% and 60%) of class F Fly Ash. The RCC mixtures were designed to have a 28 days flexural strength of 5.0 N/mm2. The specimens were subjected to two types of abrasion resistance tests such as Contabro test and surface abrasion resistance test with rotating cutter besides Compressive and Flexural strength tests. Experimental results shows that the Cantabro loss and surface abrasion loss were increased with increase in Fly Ash content in relation with the strength of roller compacted concrete pavement at the ages from 7days to 180days compared to control mix concrete. Equations were established based on compressive strength and flexural strength which were influenced by cement replacement by Fly Ash and developed to predict abrasion resistance of FRCC at any age. Also a relationship was established between Cantabro loss and surface abrasion loss of FRCC regardless of age and percent replacement of Fly Ash.


Sign in / Sign up

Export Citation Format

Share Document